Table Of ContentROBOTIC
MICROASSEMBLY
Editedby
MICHAE¨L GAUTHIER
STE´PHANE RE´GNIER
IEEEPRESS
AJOHNWILEY&SONS,INC.,PUBLICATION
ROBOTIC
MICROASSEMBLY
IEEE Press
445 Hoes Lane
Piscataway, NJ 08854
IEEE Press Editorial Board
Lajos Hanzo, Editor inChief
R. Abari M. El-Hawary S. Nahavandi
J. Anderson B. M. Hammerli W. Reeve
F. Canavero M. Lanzerotti T. Samad
T. G. Croda O. Malik G. Zobrist
Kenneth Moore, Directorof IEEE Book and Information Services(BIS)
ROBOTIC
MICROASSEMBLY
Editedby
MICHAE¨L GAUTHIER
STE´PHANE RE´GNIER
IEEEPRESS
AJOHNWILEY&SONS,INC.,PUBLICATION
Copyright2010bytheInstituteofElectricalandElectronicsEngineers,Inc.
PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.Allrightsreserved.
PublishedsimultaneouslyinCanada
Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinany
formorbyanymeans,electronic,mechanical,photocopying, recording,scanning,orotherwise,
exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,without
eitherthepriorwrittenpermissionofthePublisher,orauthorizationthroughpaymentofthe
appropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,
MA01923,(978)750-8400,fax(978)750-4470,oronthewebatwww.copyright.com.Requests
tothePublisherforpermissionshouldbeaddressedtothePermissionsDepartment,JohnWiley&
Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,oronlineat
http://www.wiley.com/go/permission.
LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbest
effortsinpreparingthisbook,theymakenorepresentationsorwarrantieswithrespecttothe
accuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimplied
warrantiesofmerchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedor
extendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategiescontained
hereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhere
appropriate.Neitherthepublishernorauthorshallbeliableforanylossofprofitoranyother
commercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orother
damages.
Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontact
ourCustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnited
Statesat(317)572-3993orfax(317)572-4002.
Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprint
maynotbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitour
websiteatwww.wiley.com.
LibraryofCongressCataloging-in-PublicationData:
Gauthier,Michae¨l,1975-
Roboticmicro-assembly/Michae¨lGauthier,Ste´phaneRe´gnier.
p.cm.
Includesbibliographicalreferencesandindex.
ISBN978-0-470-48417-3(cloth:alk.paper)1.Robotics.2.Robots,Industrial.
3.Microfabrication.I.Regnier,Stephane.II.Title.
TJ211.G3782010
670.42(cid:1)72–dc22
2009054236
PrintedintheUnitedStatesofAmerica
10 9 8 7 6 5 4 3 2 1
CONTENTS
FOREWORD xi
PREFACE xiii
CONTRIBUTORS xvii
I MODELING OF THE MICROWORLD
1 MICROWORLDMODELINGINVACUUMANDGASEOUS
ENVIRONMENTS 3
PierreLambertandSte´phaneRe´gnier
1.1 Introduction / 3
1.1.1 Introduction on Microworld Modeling / 3
1.1.2 Microworld Modeling for Van der Waals Forces and
Contact Mechanics / 5
1.2 Classical Models / 6
1.2.1 Van der Waals Forces / 6
1.2.2 Capillary Forces / 17
1.2.3 Elastic Contact Mechanics / 34
1.3 Recent Developments / 36
1.3.1 Capillary Condensation / 36
1.3.2 Electrostatic Forces / 39
References / 49
v
vi CONTENTS
2 MICROWORLDMODELING:IMPACTOFLIQUIDAND
ROUGHNESS 55
PierreLambertandSte´phaneRe´gnier
2.1 Introduction / 55
2.2 Liquid Environments / 55
2.2.1 Classical Models / 55
2.2.2 Sphere–Sphere and Sphere–Plane Interactions / 60
2.2.3 Theoretical Comparison Between Air and Liquid / 68
2.2.4 Impact of Hydrodynamic Forces on Microobject
Behavior / 70
2.3 Microscopic Analysis / 74
2.3.1 AFM-Based Measurements / 74
2.3.2 Experiments on Adhesion Forces / 76
2.3.3 Various Phenomena / 83
2.4 Surface Roughness / 84
2.4.1 Surface Topography Measurements / 84
2.4.2 Statistical Parameters / 85
2.4.3 Models of Surface Roughness / 88
2.4.4 Fractal Parameters / 89
2.4.5 Extracting the Fractal Character of Surfaces / 93
2.4.6 Conclusion / 101
References / 102
II HANDLING STRATEGIES
3 UNIFIEDVIEWOFROBOTICMICROHANDLINGAND
SELF-ASSEMBLY 109
QuanZhouandVeikkoSariola
3.1 Background / 109
3.2 Robotic Microhandling / 111
3.2.1 Microhandling System / 111
3.2.2 Microhandling Strategies / 112
3.3 Self-Assembly / 115
3.3.1 Working Principle / 116
3.3.2 Self-Assembly Strategies / 117
3.4 Components of Microhandling / 119
3.4.1 Feeding / 119
3.4.2 Positioning / 120
3.4.3 Releasing, Alignment, and Fixing / 121
CONTENTS vii
3.4.4 Environment / 122
3.4.5 Surface Properties / 123
3.4.6 External Disturbance and Excitation / 125
3.4.7 Summary and Discussion / 126
3.5 Hybrid Microhandling / 127
3.5.1 Case Study: Hybrid Microhandling Combining Droplet
Self-Alignment and Robotic Microhandling / 128
3.5.2 Analysis of Droplet Self-Alignment-Based Hybrid
Microhandling / 136
3.5.3 Summary / 138
3.6 Conclusion / 138
References / 139
4 TOWARDAPRECISEMICROMANIPULATION 145
Me´lanieDafflonandReymondClavel
4.1 Introduction / 145
4.2 Handling Principles and Strategies Adapted to the
Microworld / 145
4.2.1 State of the Art of Micromanipulation Principles / 146
4.2.2 Adhesion Ratio at Interfaces / 146
4.2.3 Adhesion-Based Micromanipulation / 150
4.2.4 Grasping—A Special Case of Adhesion Handling / 159
4.2.5 Case of an Additional Force Acting at the Interface / 162
4.2.6 Caseof anExternalForceActing onthe Component / 163
4.3 Micromanipulation Setup / 164
4.4 Experimentations / 166
4.4.1 Microtweezer Family / 168
4.4.2 Inertial Microgripper Based on Adhesion / 173
4.4.3 Vacuum Nozzle Assisted by Vibration / 177
4.4.4 Thermodynamic Microgripper / 180
4.5 Conclusion / 184
References / 185
5 MICROHANDLINGSTRATEGIESANDMICROASSEMBLY
INSUBMERGEDMEDIUM 189
Michae¨lGauthier
5.1 Introduction / 189
5.2 Dielectrophoretic Gripper / 190
5.2.1 Principle of Dielectrophoresis / 190
viii CONTENTS
5.2.2 Application of the Dielectrophoresis in
Micromanipulation / 193
5.3 Submerged Freeze Gripper / 196
5.3.1 Ice Grippers in the Air / 196
5.4 Chemical Control of the Release in Submerged Handling / 202
5.4.1 Chemical Functionalization / 203
5.4.2 Experimental Force Measurements / 204
5.4.3 Modeling of Surface Charges / 210
5.4.4 Application of Functionalized Surfaces in
Micromanipulation / 211
5.5 Release on Adhesive Substrate and Microassembly / 212
5.5.1 Handling and Assembly Strategy / 212
5.5.2 Robotic Microassembly Device / 214
5.5.3 First Object Positioning / 216
5.5.4 Experimental Microassembly / 217
5.5.5 Insertion / 218
5.6 Conclusion / 221
References / 222
III ROBOTIC AND MICROASSEMBLY
6 ROBOTICMICROASSEMBLYOF3DMEMSSTRUCTURES 227
NikolaiDechev
6.1 Introduction / 227
6.2 Methodology of the Microassembly System / 228
6.2.1 Purpose of the Microassembly System / 228
6.2.2 System Objectives / 228
6.2.3 Microassembly versus Micromanipulation / 228
6.2.4 Microassembly Concept / 229
6.2.5 Interface Between Microassembly Subsystems / 229
6.3 Robotic Micromanipulator / 230
6.4 Overview of Microassembly System / 232
6.4.1 Bonding a Microgripper to the Probe Pin of the RM / 232
6.5 Modular Design Features for Compatibility with the
Microassembly System / 239
6.6 Grasping Interface (Interface Feature) / 239
6.7 PMKIL Microassembly Process / 241
6.7.1 Grasping a Micropart / 242
6.7.2 Removing the Micropart from Chip / 243