ebook img

Stochastic geometry for image analysis PDF

347 Pages·21.957 MB·English
Save to my drive
Quick download
Download

Download Stochastic geometry for image analysis PDF Free - Full Version

by Xavier Descombes| 347 pages| 21.957| English

About Stochastic geometry for image analysis

"This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Numerous applications, covering remote sensing images, biological and medical imaging, are detailed. This book provides all the necessary tools for developing an image analysis application based on modern stochastic modeling"-- Read more... Content: Chapter 1. Introduction / X. Descombes -- Chapter 2. Marked Point Processes for Object Detection / X. Descombes -- 2.1. Principal definitions -- 2.2. Density of a point process -- 2.3. Marked point processes -- 2.4. Point processes and image analysis -- 2.4.1. Bayesian versus non-Bayesian -- 2.4.2. A priori versus reference measure -- Chapter 3. Random Sets for Texture Analysis / C. Lantǔjoul, M. Schmitt -- 3.1. Introduction -- 3.2. Random sets -- 3.2.1. Insufficiency of the spatial law -- 3.2.2. Introduction of a topological context -- 3.2.3. The theory of random closed sets (RACS) -- 3.2.4. Some examples -- 3.2.5. Stationarity and isotropy -- 3.3. Some geostatistical aspects -- 3.3.1. The ergodicity assumption -- 3.3.2. Inference of the DF of a stationary ergodic RACS -- 3.3.2.1. Construction of the estimator -- 3.3.2.2. On sampling -- 3.3.3. Individual analysis of objects -- 3.4. Some morphological aspects -- 3.4.1. Geometric interpretation -- 3.4.1.1. Point -- 3.4.1.2. Pair of points -- 3.4.1.3. Segment -- 3.4.1.4. Ball -- 3.4.2. Filtering -- 3.4.2.1. Opening and closing -- 3.4.2.2. Sequential alternate filtering -- 3.5. Appendix: demonstration of Miles' formulae for the Boolean model -- Chapter 4. Simulation and Optimization / F. Lafarge, X. Descombes, E. Zhizhina, R. Minlos -- 4.1. Discrete simulations: Markov chain Monte Carlo algorithms -- 4.1.1. Irreducibility, recurrence, and ergodicity -- 4.1.1.1. Definitions -- 4.1.1.2. Stationarity -- 4.1.1.3. Convergence -- 4.1.1.4. Irreducibility -- 4.1.1.5. Aperiodicity -- 4.1.1.6. Harris recurrence -- 4.1.1.7. Ergodicity -- 4.1.1.8. Geometric ergodicity -- 4.1.1.9. Central limit theorem -- 4.1.2. Metropolis-Hastings algorithm -- 4.1.3. Dimensional jumps -- 4.1.3.1. Mixture of kernels -- 4.1.3.2. π-reversibility -- 4.1.4. Standard proposition kernels -- 4.1.4.1. Simple perturbations -- 4.1.4.2. Model switch -- 4.1.4.3. Birth and death -- 4.1.5. Specific proposition kernels -- 4.1.5.1. Creating complex transitions from standard transitions -- 4.1.5.2. Data-driven perturbations -- 4.1.5.3. Perturbations directed by the current state -- 4.1.5.4. Composition of kernels -- 4.2. Continuous simulations -- 4.2.1. Diffusion algorithm -- 4.2.2. Birth and death algorithm -- 4.2.3. Muliple births and deaths algorithm -- 4.2.3.1. Convergence of the distributions -- 4.2.3.2. Birth and death process -- 4.2.4. Discrete approximation -- 4.2.4.1. Acceleration of the multiple births and deaths algorithm -- 4.3. Mixed simulations -- 4.3.1. Jump process -- 4.3.2. Diffusion process -- 4.3.3. Coordination of jumps and diffusions -- 4.4. Simulated annealing -- 4.4.1. Cooling schedule -- 4.4.2. Initial temperature T0 -- 4.4.3. Logarithmic decrease -- 4.4.4. Geometric decrease -- 4.4.5. Adaptive reduction -- 4.4.6. Stopping criterion/final temperature -- Chapter 5. Parametric Inference for Marked Point Processes in Image Analysis / R. Stoica, F. Chatelain, M. Sigelle -- 5.1. Introduction -- 5.2. First question: what and where are the objects in the image? -- 5.3. Second question: what are the parameters of the point process that models the objects observed in the image? -- 5.3.1. Complete data -- 5.3.1.1. Maximum likelihood -- 5.3.1.2. Maximum pseudolikelihood -- 5.3.2. Incomplete data: EM algorithm -- 5.4. Conclusion and perspectives -- 5.5. Acknowledgments -- Chapter 6. How to Set Up a Point Process? / X. Descombes -- 6.1. From disks to polygons, via a discussion of segments -- 6.2. From no overlap to alignment -- 6.3. From the likelihood to a hypothesis test -- 6.4. From Metropolis-Hastings to multiple births and deaths -- Chapter 7. Population Counting / X. Descombes -- 7.1. Detection of Virchow-Robin spaces -- 7.1.1. Data modeling -- 7.1.2. Marked point process -- 7.1.3. Reversible jump MCMC algorithm -- 7.1.4. Results -- 7.2. Evaluation of forestry resources -- 7.2.1. 2D model -- 7.2.1.1. Prior -- 7.2.1.2. Data term -- 7.2.1.3. Optimization -- 7.2.1.4. Results -- 7.2.2. 3D model -- 7.2.2.1. Results -- 7.3. Counting a population of flamingos -- 7.3.1. Estimation of the flamingo color -- 7.3.2. Simulation and optimization by multiple births and deaths -- 7.3.3. Results -- 7.4. Counting the boats at a port -- 7.4.1. Initialization of the optimization algorithm -- 7.4.1.1. Parameter γd -- 7.4.1.2. Calibration of the do parameter -- 7.4.2. Initial results -- 7.4.3. Modification of the data energy -- 7.4.3.1. First modification of the prior energy -- 7.4.3.2. Second modification of the prior energy -- Chapter 8. Structure Extraction / F. Lafarge, X. Descombes -- 8.1. Detection of the road network -- 8.2. Extraction of building footprints -- 8.3. Representation of natural textures -- 8.3.1. Simple model -- 8.3.1.1. Data term -- 8.3.1.2. Sampling by jump diffusion -- 8.3.1.3. Results -- 8.3.2. Models with complex interactions -- Chapter 9. Shape Recognition / F. Lafarge, C. Mallet -- 9.1. Modeling of a LIDAR signal -- 9.1.1. Motivation -- 9.1.2. Model library -- 9.1.2.1. Energy formulation -- 9.1.3. Sampling -- 9.1.4. Results -- 9.1.4.1. Simulated data -- 9.1.4.2. Satellite data: large footprint waveforms -- 9.1.4.3. Airborne data: small footprint waveforms -- 9.1.4.4. Application to the classification of 3D point clouds -- 9.2. 3D reconstruction of buildings -- 9.2.1. Library of 3D models -- 9.2.2. Bayesian formulation -- 9.2.2.1. Likelihood -- 9.2.2.2. A priori -- 9.2.3. Optimization -- 9.2.4. Results and discussion -- Bibliography -- List of Authors -- Index. Abstract: This book develops the stochastic geometry framework for image analysis purpose. Two main frameworks are described: marked point process and random closed sets models. We derive the main issues for defining an appropriate model. The algorithms for sampling and optimizing the models as well as for estimating parameters are reviewed. Read more...

Detailed Information

Author:Xavier Descombes
ISBN:1118601327
Pages:347
Language:English
File Size:21.957
Format:PDF
Price:FREE
Download Free PDF

Safe & Secure Download - No registration required

Why Choose PDFdrive for Your Free Stochastic geometry for image analysis Download?

  • 100% Free: No hidden fees or subscriptions required for one book every day.
  • No Registration: Immediate access is available without creating accounts for one book every day.
  • Safe and Secure: Clean downloads without malware or viruses
  • Multiple Formats: PDF, MOBI, Mpub,... optimized for all devices
  • Educational Resource: Supporting knowledge sharing and learning

Frequently Asked Questions

Is it really free to download Stochastic geometry for image analysis PDF?

Yes, on https://PDFdrive.to you can download Stochastic geometry for image analysis by Xavier Descombes completely free. We don't require any payment, subscription, or registration to access this PDF file. For 3 books every day.

How can I read Stochastic geometry for image analysis on my mobile device?

After downloading Stochastic geometry for image analysis PDF, you can open it with any PDF reader app on your phone or tablet. We recommend using Adobe Acrobat Reader, Apple Books, or Google Play Books for the best reading experience.

Is this the full version of Stochastic geometry for image analysis?

Yes, this is the complete PDF version of Stochastic geometry for image analysis by Xavier Descombes. You will be able to read the entire content as in the printed version without missing any pages.

Is it legal to download Stochastic geometry for image analysis PDF for free?

https://PDFdrive.to provides links to free educational resources available online. We do not store any files on our servers. Please be aware of copyright laws in your country before downloading.

The materials shared are intended for research, educational, and personal use in accordance with fair use principles.