Table Of ContentSTABILITY INVESTIGATIONS ALONG THE ORDU PERIPHERAL HIGHWAY
(KM: 21+000 – KM: 40+114)
A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES
OF
THE MIDDLE EAST TECHNICAL UNIVERSITY
BY
EVRİM SOPACI
IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE OF
MASTER OF SCIENCE
IN
THE DEPARTMENT OF GEOLOGICAL ENGINEERING
DECEMBER 2003
Approval of the Graduate School of Natural and Applied Sciences
Prof. Dr. Canan ÖZGEN
Director
I certify that this thesis satisfies all the requirements as a thesis for the degree of Master of
Science
Prof. Dr. Asuman TÜRKMENOĞLU
Head of the Department
This is to certify that we have read this thesis and that in our opinion it is fully adequate, in
scope and quality, as a thesis for the degree of Master of Science
Prof. Dr. Haluk AKGÜN
Supervisor
Examining Committee Members
Prof. Dr. Yıldız WASTI
Prof. Dr. Ufuk ERGUN
Prof. Dr. Erdal ÇOKCA
Prof. Dr. Haluk AKGÜN
Geo. Eng. Mustafa AKINCI
ABSTRACT
STABILITY INVESTIGATIONS ALONG THE ORDU PERIPHERAL HIGHWAY
Sopacı, Evrim
M.S., Department of Geological Engineering
Supervisor: Prof. Dr. Haluk Akgün
December 2003, 652 pages
The Eastern Black Sea Region of Turkey accommodates indecent residence conditions for
people owing to ground conditions comprising mainly of volcanics and concurrent flysch,
and its related irregular geomorphology. One of the important difficulties in this region is
transportation. Accordingly, the Ordu Peripheral Highway which encompasses various
structures such as, open-cuts, bridges, viaducts and junctions and double tubed tunnel
sections which will be driven in these geological and geomorphological conditions is
planned to be constructed.
In regional scale, volcanics, pyroclastics and flysch deposits often intertongue with each
other even over very short distances. The accurate determination of the shear strength
parameters of these lithologies is vital for the assessment of portal slope stability and support
design in regards to tunnel design. Rock mass classification systems, namely, RMR, NGI Q
system and GSI, have been employed to obtain the rock mass shear strength parameters.
Stress analysis around the tunnel openings has been executed through employing 2D finite
element analysis in an attempt to design tunnel support. The results of the finite element
analysis have been correlated with the results obtained from the empirical methods. The
overall analyses and interpretations led to the determination of the support systems to be
employed during tunnel construction.
KEYWORDS: Black Sea Region, Tunnel, Volcanics, Flysch, Rock mass, Rock mass
classification.
iii
ÖZ
ORDU ÇEVRE YOLU BOYUNCA DURAYLILIK İNCELEMELERİ
Sopacı, Evrim
Yüksek Lisans, Jeoloji Mühendisliği Bölümü
Tez Yöneticisi: Prof. Dr. Haluk Akgün
Aralık 2003, 652 sayfa
Türkiye’nin Doğu Karadeniz Bölgesi, zemin koşullarının volkanik kayaçlar ve bunlarla eş
yaşlı flişlerden oluşması ve bunlarla ilişkili olarak düzensiz yerşekilleri barındırması nedeni
ile insan yaşamı ve yerleşimi için pek de uygun olmayan bir durum sunar. Bölgedeki önemli
sorunlardan biri olan ulaşımı çözmek amacı ile yapımı düşünülen Ordu Çevre Yolu yarma,
köprü, viyadük ve kavşak gibi kimi yapıların yanısıra yukarıda sözü edilen jeoloji ve
yerşekilleri koşullarında açılması gereken, her biri iki tüpten oluşan iki tünel bölümünü de
içermektedir.
Bölgesel ölçekte volkanikler, volkanik çökeller (pyroclastics) ve flişler çok kısa aralıklarda
bile birbirlerine sık geçişlidirler. Tünel tasarımı açısından bu biçim karmaşıkların dayanım
parametrelerinin doğru olarak belirlenmesi tünel giriş-çıkış şev duraylılığı ve tünel destek
tasarımı değerlendirmeleri için çok önemlidir. Bu gerçek doğrultusunda RMR, NGI Q
Sistem ve GSI kaya sınıflamaları yapılmış, birbirleri ile deneştirilmiş ve kaya kütlesi
bağlamında yorumlanmıştır. Bu sınıflama ve yorumlardan elde edilen dayanım parametreleri
tünel giriş-çıkış şev duraylılık analizleri ve tünel destek tasarımı için veri olarak
kullanılmıştır. 2D sonlu elemanlar çözümleme programı ile de tünel açıklığı çevresindeki
gerilme çözümlemeleri yapılmış ve sonuçlar görgül (ampirik) yöntem sonuçları ile
deneştirilmiştir. Sonuç olarak tüm hesaplamalar ve yorumlar ışığında yapım aşamasında
uygulanmak üzere tünel ve portal kesimleri için destek tipleri geliştirilmiştir.
ANAHTAR SÖZCÜKLER: Karadeniz bölgesi, Tünel, Volkanik kayaçlar, Fliş, Kaya kütlesi,
Kaya kütlesi sınıflaması.
iv
ACKNOWLEDGEMENTS
Many people, directly or indirectly, have contributed to the development of this thesis. I
profoundly appreciate those people who have lent me helping hand.
I am thankful to all my instructors who have supported me through my thesis studies. I
especially appreciate the assistance and support of Prof. Dr. Haluk AKGÜN; P. E. and
Research Assistant Mustafa Kerem KOÇKAR.
In the name of TEMELSU International Engineering Services Inc., I would like to thank Mr.
Mustafa AKINCI for sharing his vast experience and his guidance at every stage of my
engineering career and my thesis. In addition, I appreciate the support of Mr. Ömer ARDIÇ,
Mr. Yavuz KURDOĞLU, Mr. Yavuz KARAGÜMÜŞ and Mr. Hasan ÖZKAN.
I am grateful to my family and my “little kitty” for their endless assistance and support
regarding my life.
v
TABLE OF CONTENTS
ABSTRACT………………………………………………………………………………………………..…………………iii
ÖZ......……………………………………………………………………………………………………………...…………….iv
ACKNOWLEDGMENTS…………………………………………………………………………………………….……v
TABLE OF CONTENTS………………………………………………………………..………………….……………...vi
LIST OF TABLES..............................................................................................................................viii
LIST OF FIGURES...............................................................................................................................xi
LIST OF SYMBOLS AND ABBREVIATIONS…………………………………………………………………..xiii
LIST OF APPENDICES….………………………………………..………………………………..…….……………....xv
CHAPTERS
I. INTRODUCTION..............................................................................................................................1
1.1 Methodology............................................................................................................1
1.2 Purpose and scope....................................................................................................2
1.3 Organization and Investigation Teams....................................................................3
1.4 Project area.............................................................................................................3
1.5 Previous studies…………………………………………………………………….4
II. GEOLOGICAL SETTING................................................................................................................6
2.1 Introduction..............................................................................................................6
2.2 Stratigraphy..............................................................................................................7
2.2.1 Mesozoic (Jurassic – Cretaceous).......................................................7
2.2.1.1 Zinav limestone........................................................................................7
2.2.1.2 Mesudiye formation.................................................................................7
2.2.1.3 Tirebolu formation...................................................................................9
2.2.1.4 Akveren formation.................................................................................10
2.2.2 Cenozoic (Tertiary)...........................................................................11
2.2.2.1 Kozmandağı limestone...........................................................................11
2.2.2.2 Kumru formation....................................................................................11
2.2.2.3 Tekkeköy Formation..............................................................................12
2.2.3 Cenozoic (Quaternary)......................................................................12
2.2.3.1 Recent Alluvium Deposits.....................................................................12
2.2.3.2 Slope Debris...........................................................................................12
2.3 Tectonics................................................................................................................13
2.4 Structural Geology.................................................................................................13
2.5 Geomorphology.....................................................................................................14
III. GEOTECHNICAL ASSESSMENT OF THE STUDY AREA......................................................15
3.1 Introduction............................................................................................................15
3.2 Surface Investigations............................................................................................16
3.2.1 Surface Investigation of the Upper Cretaceous Volcanics.....................17
3.2.2 Surface Investigation of the Maastrichtian - Paleocene Sedimentary Rocks 19
3.3 Subsurface Investigations......................................................................................20
3.4 Rock Mechanics Laboratory Tests.........................................................................22
3.5 Seismicity...............................................................................................................26
IV. ROCK MASS CLASSIFICATION SYSTEMS............................................................................27
4.1 Introduction............................................................................................................27
4.2 Geomechanics Classification (Rock Mass Rating System)...................................30
4.3 NGI Tunneling Quality Index (Q-system).............................................................38
4.3.1 Comparison of the RMR and Q systems...........................................49
4.4 Modified Rock Mass Classification: M-RMR System..........................................51
4.4.1 Comparison of the RMR and M-RMR systems.....................................55
vi
4.5 New Austrian Tunneling Method (NATM)...........................................................56
4.5.1 General Concepts of NATM.............................................................58
4.6 Geological Strength Index (GSI)...........................................................................65
4.7 Rock Mass Classifications of the Boztepe (T-1) and Öceli (T-2) Tunnel Rock
Masses ...............................................................................................................................65
4.7.1 NGI Q System...................................................................................65
4.7.1.1 Boztepe (T-1) Tunnel.............................................................................66
4.7.1.2 Öceli (T-2) Tunnel.................................................................................73
4.7.2 Geomechanics Classification (RMR) System...................................79
4.7.2.1 A-RMR calculation of the Boztepe (T-1) Tunnel..................................80
4.7.2.2 A-RMR calculation of the Öceli (T-2) Tunnel.......................................83
4.7.2.3 Correlation of A-RMR values with NGI Q index..................................85
4.7.3 New Austrian Tunneling Method (NATM) descriptions..................85
4.7.4 Tunnel Support Determination..........................................................90
V. ROCK MASS STRENGTH............................................................................................................92
5.1 Introduction............................................................................................................92
5.2 The Mohr-Coulomb Failure Criterion....................................................................93
5.3 Hoek-Brown Failure Criterion...............................................................................95
5.3.1 Introduction..........................................................................................................95
5.3.2 Historical Development.......................................................................................95
5.3.3 Generalized Hoek-Brown Criterion...................................................................100
5.3.4 Geological Strength Index (GSI).......................................................................107
5.3.4.1 GSI Assessment for Heterogenous Rock Masses................................108
5.4 Rock Mass Strength Determination along the Boztepe (T-1) and Öceli (T-2)
tunnels .............................................................................................................................113
VI. TUNNEL PORTAL SLOPE DESIGN........................................................................................120
6.1 Introduction................................................................................................................120
6.2 Kinematical Analyses................................................................................................122
6.2.1 Plane Failure.......................................................................................................122
6.2.2 Wedge Failure.....................................................................................................125
6.2.3 Toppling..............................................................................................................128
6.3 Limit Equilibrium Method (Deterministic Approach)...............................................132
6.4 Deformation Analysis (Finite Element Method)........................................................132
6.5 Geotechnical Field Evaluation of Tunnel Portals......................................................133
6.5.1 Kinematical Analyses.........................................................................................136
6.5.1.1 Boztepe Tunnel............................................................................................136
6.5.1.1.1 Cut Slopes of Boztepe Tunnel Entrance...............................................136
6.5.1.1.2 Cut Slopes of Boztepe Tunnel Exit...............................................................139
6.5.1.2 Öceli Tunnel.................................................................................................142
6.5.1.2.1 Cut Slopes of Öceli Tunnel Entrance....................................................142
6.5.1.2.2 Cut Slopes of Öceli Tunnel Exit...........................................................146
6.5.2 The limit equilibrium method analyses...............................................................149
VII. IN SITU AND INDUCED STRESS ANALYSIS......................................................................156
7.1 Introduction................................................................................................................156
7.2 In situ Stresses............................................................................................................156
7.3 Induced Stresses.........................................................................................................158
7.4 Numerical Methods of Stress Analyses...................................................................158
7.4.1 The Phase2 Software.......................................................................................159
7.5 In Situ and Induced Stress Analysis of the Boztepe (T-1) and Öceli (T-2) Tunnels.
.............................................................................................................................160
7.5.1 In Situ and Induced Stress Analysis of the Boztepe (T-1) tunnel.......................161
7.5.2 In Situ and Induced Stress Analysis of the Öceli (T-2) tunnel............................162
7.5.3 Summary of the hybrid analysis results..............................................................163
VIII. CONCLUSIONS AND RECOMMENDATIONS....................................................................173
REFERENCES...................................................................................................................................177
vii
LIST OF TABLES
TABLE
3.1. The summary of Borehole Data.....................................................................................21
3.2 Domain characterizations of the Boztepe (T-1) and Öceli (T-2) tunnels........................22
3.3. Uniaxial compression test results...................................................................................24
3.4. Results of the triaxial compressive strength tests of the core samples...........................25
3.5. Indirect tensile strength (Brazilian) test results..............................................................26
4.1. Best known empirical rock mass classification systems................................................28
4.2. Rock Mass Rating System (After Bieniawski 1989).....................................................32
4.3. Geomechanics classifcation guide for excavation and support in rock tunnels……….37
4.4. The modified SRF values suggested by Barton and Grimstad (1994)...........................41
4.5. Classification of Individual Parameters in the Tunneling Quality Index Q (After Barton
et al 1974)......................................................................................................................42
4.6. The updated ESR values suggested by Barton and Grimstad (1994)............................45
4.7 Determination of joint condition index (I ) (Ünal, 1996)..............................................54
JC
4.8. Intervals and ratings for “joint condition” index. (Ünal, 1996).....................................56
4.9. Principal historical developments of NATM. Source: based on Sauer, 1988; Sauer and
Gold, 1989 ...............................................................................................................57
4.10. Rock Classification System.........................................................................................61
4.11. Correlations of RMR, Q and NATM...........................................................................63
4.11 – a. Correlations of RMR, Q and NATM.....................................................................64
4.12. NGI (Q) System Classification of the Boztepe (T-1) Tunnel as calculated by Classex
software..........................................................................................................................68
4.13. Maximum unsupported wall height for domains of Boztepe (T-1) Tunnel.................69
4.14. Suggested support requirements for Boztepe (T-1) Tunnel by NGI Q system (from
Barton et al., 1977).........................................................................................................70
viii
4.15. Summary of NGI Q index and related support requirements for Boztepe (T-1) Tunnel.
.......................................................................................................................................72
4.16. NGI (Q) System Classification of the Öceli (T-2) Tunnel as calculated by CLASSEX
software..........................................................................................................................74
4.17. Maximum unsupported wall height for domains of Öceli (T-2) Tunnel......................75
4.18. Suggested support requirements for the Öceli (T-2) Tunnel by NGI Q system
(from Barton et al., 1977)...............................................................................................76
4.19. Summary of NGI Q index and related support requirements for Öceli (T-2) Tunnel..78
4.20. Comparison and Correlation of RMR and Q systems at tunnel portals.......................80
4.21. Maximum and possible spans with stand-up times for the Boztepe (T-1) Tunnel......81
4.22. Support categories determined through A-RMR classification of the Boztepe (T-1)
tunnel.............................................................................................................................82
4.23. Maximum and possible spans with stand-up times for the Öceli (T-2) Tunnel...........83
4.24. Support categories determined through A-RMR classification of the Öceli (T-2)
tunnel.............................................................................................................................84
4.25. NATM descriptions correlated with Q and RMR for the Boztepe (T-1) Tunnel.........86
4.26. Support and excavation recommendations by NATM for the Boztepe (T-1) Tunnel..87
4.27. NATM descriptions correlated with Q and RMR for the Öceli (T-2) Tunnel.............88
4.28. Support and excavation recommendations by NATM for the Öceli (T-2) Tunnel......89
5.1. Development of the Hoek-Brown Criterion – Summary of Equations..........................97
(Hoek, 2002)..........................................................................................................................97
5.2. Field estimates of uniaxial compressive strength of intact rock (Brown, 1981)..........101
5.3. Values of constant m (Hoek and Brown, 1997)..........................................................102
i
5.4. Characterization of rock masses on the basis of interlocking and joint alteration (Hoek
and Brown, 1998).........................................................................................................109
5.5. Estimate of Geological Strength Index GSI based on geological descriptions (Hoek and
Brown, 1998)...............................................................................................................110
5.6. GSI estimates for heterogeneous rock masses such as flysch (Marinos and Hoek, 2000)
.....................................................................................................................................112
5.7. Suggested proportions of parameters σ and m for estimating rock mass properties for
ci i
flysch (Marinos and Hoek, 2000)................................................................................112
5.8. The determination of the lithology percentages that constitute flysch in the area of the
Boztepe (T-1) tunnel....................................................................................................114
5.9. The determination of the lithology percentages that constitute flysch in the area of the
Öceli (T-2) tunnel........................................................................................................115
5.10. The shear strength parameters determined via GSI of the rock masses constituting the
formerly set domains of the Boztepe (T-1) tunnel.......................................................116
ix
5.11. The shear strength parameters determined via GSI of the rock masses constituting the
formerly set domains of the Öceli (T-2) tunnel...........................................................117
5.12 The comparison of lab results and the field estimations on rock mass shear strength
parameters....................................................................................................................119
6.1. The slope gradients for highway cuts, KGM “Slope Design Guide Book, Technical
Research Department”, 1989.......................................................................................135
6.2. Boztepe (T-1) Tunnel / Plane Failure Analyses of the Portal Faces............................152
6.3. Boztepe (T-1) Tunnel / Plane Failure Analyses of the Entrance Portal Side Slopes...152
6.4. Boztepe (T-1) Tunnel / Plane Failure Analyses of the Exit Portal Side Slopes...........152
6.5. Öceli (T-2) Tunnel / Plane Failure Analyses of the Portal Faces.................................153
6.6. Öceli (T-2) Tunnel / Plane Failure Analyses of the Entrance Portal Side Slopes........153
6.7. Öceli (T-2) Tunnel / Plane Failure Analyses of the Exit Portal Side Slopes...............153
7.1 Geotechnical parameters utilized in the hybrid analysis of the Boztepe (T-1) tunnel..161
7.2 Geotechnical parameters utilized in the hybrid analysis of the Öceli (T-2) tunnel.......162
7.3 The characteristics of the support elements employed in the analyses.........................164
7.4 Finite element analyses results of the Boztepe (T-1) tunnel: Ground Category (I)......164
7.5 Finite element analyses results of the Boztepe (T-1) tunnel: Ground Category (II).....165
7.6 Finite element analyses results of the Boztepe (T-1) tunnel: Ground Category (III)....166
7.7 Finite element analyses results of the Boztepe (T-1) tunnel: Ground Category (IV)...167
7.8 Finite element analyses results of the Öceli (T-2) tunnel: Ground Category (I)...........168
7.9 Finite element analyses results of the Öceli (T-2) tunnel: Ground Category (II).........169
7.10 Finite element analyses results of the Öceli (T-2) tunnel: Ground Category (III)......170
7.11 Finite element analyses results of the Öceli (T-2) tunnel: Ground Category (IV)......171
x
Description:2D sonlu elemanlar çözümleme programı ile de tünel açıklığı çevresindeki This unit is cut by dacite and syenite particularly near the Gölköy and