Table Of ContentRESEARCHARTICLE
Short-term microbial effects of a large-scale
mine-tailing storage facility collapse on the
local natural environment
HeathW.Garris1¤*,SusanA.Baldwin2,JonTaylor2,DavidB.Gurr2,DanielR.Denesiuk1,
JonathanD.VanHamme1,LauchlanH.Fraser1
1 DepartmentsofNaturalResourceSciences&BiologicalSciences,ThompsonRiversUniversity,
Kamloops,BritishColumbia,Canada,2 DepartmentofChemicalandBiologicalEngineering,Universityof
BritishColumbia,Vancouver,BritishColumbia,Canada
a1111111111
a1111111111
¤ Currentaddress:DepartmentofBiology,CovenantCollege,LookoutMountain,Georgia,UnitedStatesof
a1111111111 America
a1111111111 *[email protected]
a1111111111
Abstract
WeinvestigatedtheimpactsoftheMountPolleytailingsimpoundmentfailureonchemical,
OPENACCESS
physical,andmicrobialpropertiesofsubstrateswithintheaffectedwatershed,comprisedof
Citation:GarrisHW,BaldwinSA,TaylorJ,Gurr 70hectaresofriparianwetlandsand40kmofstreamandlakeshore.Weestablishedabio-
DB,DenesiukDR,VanHammeJD,etal.(2018)
monitoringnetworkinOctoberof2014,twomonthsfollowingthedisturbance,andevaluated
Short-termmicrobialeffectsofalarge-scalemine-
tailingstoragefacilitycollapseonthelocalnatural riparianandwetlandsubstratesformicrobialcommunitycompositionandfunctionvia16S
environment.PLoSONE13(4):e0196032.https:// andfullmetagenomesequencing.Atotalof234sampleswerecollectedfromsubstratesat
doi.org/10.1371/journal.pone.0196032
3depthsand1,650,752sequenceswererecordedinageodatabaseframework.These
Editor:AndreaFranzetti,UniversitadegliStudidi datarevealedawealthofinformationregardingwatershed-scaledistributionofmicrobial
Milano-Bicocca,ITALY
communitymembers,aswellascommunitycomposition,structure,andresponsetodistur-
Received:October10,2017 bance.Substratesassociatedwiththeimpactzoneweredistinctchemicallyasindicatedby
Accepted:April5,2018 elevatedpH,nitrate,andsulphate.Themicrobialcommunityexhibitedelevatedmetabolic
capacityforselenateandsulfatereductionandanabundanceofchemolithoautotrophsin
Published:April25,2018
theThiobacillusthiophilus/T.denitrificans/T.thioparuscladethatmaycontributetonitrate
Copyright:©2018Garrisetal.Thisisanopen
attenuationwithintheaffectedwatershed.Themostimpactedarea(a6kmstreamconnect-
accessarticledistributedunderthetermsofthe
CreativeCommonsAttributionLicense,which ingtwolakes)exhibited30%lowermicrobialdiversityrelativetotheremainingsites.The
permitsunrestricteduse,distribution,and tailingsimpoundmentfailureatMountPolleyMinehasprovidedauniqueopportunityto
reproductioninanymedium,providedtheoriginal
evaluatefunctionalandcompositionaldiversitysoonafteramajorcatastrophicdisturbance
authorandsourcearecredited.
toassessmetabolicpotentialforecosystemrecovery.
DataAvailabilityStatement:Allsequencedataare
availableathttps://www.ncbi.nlm.nih.gov/,project
numberPRJNA433688.Metadataareavailableat
http://www.datadryad.org/,accessionDOI:https://
doi.org/10.5061/dryad.d52df21.
Introduction
Funding:ThisprojectwassupportedbyaMitacs
Accelerate/ElevatePost-doctoralFellowshipfor
Miningproduceslargequantitiesofwastematerialannually,andcontainmentfailurespresent
HeathGarris,whereprofessionaldevelopment
challengestowaterqualityandwildlife.Contemporarymininginvolvesextensiverestructur-
seminars/trainingwereprovidedwithlittle/noinput
ingoflandscapeswherevegetationandnaturally-accretedsoilsareremoved,andcontiguous
intothecontentoftheresearchproposal/
execution.Thisprogramwasco-fundedbya bedrockisexposedandpartiallyconvertedtocoarseandfinewastes.Dependingontheparent
PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 1/25
Watershed-scalemicrobialmonitoring
partnerindustry(MountPolleyMiningCorp)that materialcomposition,thesewastesarepronetoacceleratedchemicalweathering,constituting
contributedsubstantiallytothedevelopmentofthe afundamentallyalteredbiogeochemicalsettingbycomparisonwiththepre-existingecosystem
project(intheformofsiteaccess,feasibility
[1,2].Finewastes(oftentermed‘tailings’)typicallypresentthegreatestchallengesforcontain-
assessment,materialsupport,andmanuscript
mentastheyhavethegreatestpotentialforleaching(duetohighsurfaceareaforchemical
review).AdditionalfundingfromNSERCwas
weathering)andmobilityasdustorinfluidsuspensions.Forthisreason,currentbestpractices
awardedtosupportaninitial(pre-breach)water
qualityproject.NSERCmonitoredchangesinthe ofminingoperationsworldwidemanagetailingstobephysicallyandmetabolicallyisolated
proposedprojectscopebyrequestingreports,but fromthesurroundingwatershedthroughcontainmentinwasteimpoundments,suchastail-
didnotcontributetothecontentofthestudy ingsstoragefacilities[3].Overthedurationofamine’sactivelifetime,thequantityofmine
directly.Finally,GenomeBCandGenomeCanada
wastesaccumulatedonsitecanbecomeimmense.Forexample,beforetheimpoundmentfail-
supportedtheprojectthroughfundingand
ureattheMountPolleyMine(“theMine”),BritishColumbia,Canada,in2014,theMine’stail-
consultationonprojectscope/applicability/
suitabilitywithrespecttotheuseofgenomics ingsstoragefacilityhadthecapacitytocontain74millioncubicmetersofhydratedtailings
technologiesandaccomplishmentofprojectgoals, withinanimpoundmentoccupying2km2[4].
whichservedtoimproveprojectprecisions/ Despitebestpracticesforconstruction,inspectionandmaintenanceoftailingstoragefacili-
outcomes.Projectfundingwebreferences:Mitacs
ties,containmentfailureshaveoccurred[5].Underthesecircumstances,uncontrolleddeposi-
(https://www.mitacs.ca/en/impact/postdoctoral-
tionintopreviouslyprotectedsurroundingsdisturbsphysicalandchemicalproperties,and
fellows-share-program-benefits-mitacs-elevate-
theirassociatedabove-andbelow-groundecosystemswithinthesurroundinglandscape.
retreat);GenomeBC(https://www.genomecanada.
ca/en/metagenomics-assess-impacts-mount- Whilesurfaceerosionanddepositionareclearlyobserved,sub-surfacedisruptionsaremore
polley-mine-taillings-dam-breach-associated- challengingtoobserveand/orquantify.Suddenmajordisturbancesinthephysical,chemical
ecosystems);GenomeCanada(https://www. andbiologicalstructuresofnaturalsoilsandsedimentsarelikelytoimpactessentialecosystem
genomecanada.ca/en/metagenomics-assess-
functionssuchasnutrienttransport[6],weatheringanderosion,chemicaldetoxification,
impacts-mount-polley-mine-taillings-dam-breach-
waterqualitypreservation[7],supportofprimaryproductivity[8]andresiliencetoperturba-
associated-ecosystems);MountPolleyMine
(https://www.imperialmetals.com/assets/docs/mt- tions[9].Theseprocesseswilldeterminethepotentialforrecoveryinimpactedareas.Itfollows
polley/2015-02-23_MPFN.pdf). thatassessmentoftheaffectedsoilsandsedimentssoonafterthedisturbanceisrequiredto
evaluatethedegreetowhichtheseareasresistedtheimpactandinwhatwaystheirecosystem
Competinginterests:MountPolleyMineInc
providedmatchingfunds,siteaccess, functionsmayhavebeenaltered.
transportation,andmaterialassistancein Duetotheirtopographicpositionwithinlandscapes,wetlandsandriparianareasareoften
completingthisresearchproject(including thefirstrecipientsofminedsubstratesandchemicalswhencontainmentfailuresoccur.Owing
protectiveequipment,boatrentalandaccess,
totheirrelativelyhighbiologicalproductivityandaccumulationofsoilorganicmatter,these
SONDEwaterqualityprobes,andaccesstodata/
systemsarenotedfortheircapacitytoresisttoxicinputsandhaveevenbeenusedforpassive
schematicscollectedbymineemployees).This
remediationofmineeffluents[10,11].Minetailingsconsistofmineralsthatmightbecome
doesnotalterouradherencetoPLOSONEpolicies
onsharingdataandmaterials. sourcesofmetalandmetalloidcontaminantsdependingonthemineralogyoftheorebody,
mineralprocessingproceduresandenvironmentalconditionsinsidethetailings.Sequestration
anddetoxificationofmetalsandmetalloidsisfacilitatedthroughmetabolicprocessescarried
outbyspecifictypesofmicrobesthatinhabitnichesfoundinorganic-richsoilsandsediments.
Manymineremediationapproachescapitalizeonthesenaturalmetalsequestrationprocesses
byengenderingenvironmentalconditionsconducivetogrowthofbeneficialmicrobes,suchas
sulphate-reducingbacteria,Rhizobiaandmanyothermicrobeswiththecapacityformetal
immobilization[12–16].
Duringacatastrophicdisturbance,suchasaminetailingsimpoundmentfailure,theafore-
mentionedecosystemfunctionsofsoilandsedimentmicrobiomesarechallenged.Fewstudies
haveevaluatedtherolesoilmicrobialcommunitycompositionandalpha/betadiversityplayin
resiliencetodisturbance[17–20].Microbialcommunitiesmayrespondtosuddendisturbances
byexhibitingresilienceenablingrapidrecoverybacktopre-existingecosystemfunctions[21].
Theymaypersistinaperpetuallysuppressedstate,orexhibitshiftstoalternate,lessdesirable
statesthatprohibitrestorationorreducethebeneficialrelationshipsbetweenmicrobialdiver-
sity,soilandplantquality,andecosystemsustainability[22].Itisalsopossiblethatmicrobial
communitiesmayshiftinresponsetosuddenenvironmentalchangestowardsestablishment
ofalternatestructuralandfunctionalstatesthatpromoterestoration,toalbeitalternatebutsta-
bleecosystems[23].Depositionoftailingsmightresultinchronicdisturbancetosoiland
PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 2/25
Watershed-scalemicrobialmonitoring
sedimentmicrobiomes,whichisthoughttoleadtoreducedecosystemresiliencyshouldsub-
stratesbesubjectedtolargerstressorsinthefuture[24].
Forthisstudy,weaddresseddisturbanceofthestructureandfunctionofripariansoiland
sedimentmicrobialcommunitiesinthepathofdispersedtailingsandinnon-impactedsites
twomonthsfollowingthefailureofatailingsstoragefacilityatMountPolleyMine,(Likely,
BCCanada).Theimpoundmentfailureproducedawatershed-scaledisturbancegradient,
wheresoilswereerodedtobedrockandreplacedwithtailings(characteristicofHazeltine
Creek),whileothersexhibitedvaryingdegreesofmixingandburial(characteristicofPolley
Lake).Asaresult,MountPolleyisuniqueinthetimelinessofbaselinedatacollectedfollowing
thedisturbance,butsharesthedisadvantageofmanymajordisturbancestudiesinthelackof
dataquantifyingheterogeneityinsystemparametersbeforethedisturbanceoccurred.
TheMountPolleyMinetailingsstoragefacilityexperiencedafailureoffoundationmaterial
andsubsequentbreachatapproximately2:00am,Monday,August4,2014incentralBritish
Columbia,Canada[25].Foundationfailuresrepresent~6%ofthe147tailingsimpoundment
failuresreportedglobally[26].Overthefollowing2–3daysapproximately10.6millionm3of
mine-influenced,untreatedwaterandsedimentescapedintothenaturalwatershed[27],dis-
persingoverapproximately25hectaresoflake-associatedwetlandand45hectaresofriparian
area,anddepositingtogetherwithscourednaturalmaterialintoPolleyLakeandQuesnelLake
withtheriskoffurthertransportationdownstreamintotheQuesnelRiver[4].Impactsofthis
disturbanceonsoilandsedimentmicrobialpopulationsoftheaffectedriparianareaandlake-
associatedwetlandsweredeterminedthroughametagenomicsurveyalongthegradientoftail-
ingsdepositionawayfromtheimpoundmentfailureorigin.Thesemetagenomicrecordswere
combinedwithphysicalandchemicalcharacteristicsofthecollectedsubstratesandanalyzed
withinageodatabaseframeworktoassessmicrobialcommunityconnectionstoenvironmental
variablesincludingsoil,nutrient,andwaterstatus,andpassiveuptakeofcontaminants.
Materials&methods
Samplesitelocations
FieldsamplingwasconductedwithpermissionfromMountPolleyMineCorporation.Suitable
locationsforsamplecollectionweredeterminedbyperformingasurveyoftheaffectedwater-
shedviahighresolutionaerialphotographyandLandsatThematicMapperImagery[28].Sam-
plingconsistedof60establishedfieldsitesdistributedwithintheHazeltineCreekfloodplain
(19),PolleyLakefloodplain(20),QuesnelLakeFloodplain(9),andtheBootjackLakeFlood-
plain(12)(Fig1).
Shorelineecosystemsweretargetedsinceprimarymacrophyteproductivityishighestin
theseregionsandconsequentlytheyarelikelytoharbourdiversebelow-groundmicrobial
communitiesimportantforecosystemfunction.Forstreamandlakesidesamplesites,abase-
pointwasestablished(markedviaGPS(S1Table),surveyflagging,andaburiedgalvanized
steelpin).
Samplecollection
MonitoringsitesweresampledbetweenOctober7thand23rd,2014.Twotothreehundred
gramsofsubstratewereremovedfrom6locationsateachsiteandplacedintosterileWhirl-
Pak1bags.Sampleswerecollectedfromthreedistincthabitats(Fig3).
TheriparianandlakeareasaffectedbythetailingsimpoundmentfailureincludedHazeltine
Creek,PolleyLakeandQuesnelLake(Fig1).Theextentandamountoftailingsdepositedter-
restriallyandintothelakeshavebeenreportedindetailinthePostEventEnvironmental
ImpactAssessmentReportpublishedaftermuchsurveyworkwasconductedinthemonths
PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 3/25
Watershed-scalemicrobialmonitoring
Fig1.Biomonitoringnetworksamplesites.Sitesarelocatedwithintheaffectedwatershed,inhydricsoilsassociatedwithexistingwaterbodies.With
theexceptionofBootjackLake(referencearea)theselectedsitesreflectacontinuumofphysicalandchemicalimpactsfromtheevent.SubstrateCode
coloursreflectdesignationsdetailedinFig2.
https://doi.org/10.1371/journal.pone.0196032.g001
followingtheevent[4].Lessthan48hoursafterthefailure,short-waveinfraredreflectance
fromBootjackandPolleyLakeswasrecordedbyLandsat[28](USGS2011)andusedtodetect
solidssuspendedinPolleyLake(Fig4).
IncomparisontoBootjackLake,whichwasnotinthepathofthedepositedtailingssinceit
islocatedwestoftheminesite,higherloadingsofsuspendedsolidswereclearlyvisibleinPol-
leyLake.Basedontheintensityofthereflectance,theamountofsedimentattenuationinto
PolleyLakewasestimatedtofollowalogarithmicratelawwithdistanceawayfromthesouth-
eastshoreofPolleyLakewherethedepositedtailingsenteredtheLake(Fig4).Spacingofsam-
plinglocationsalongtheshoresofPolleyLakewasbasedonthisrelationship(Fig1).
Twosamplesweretakenfromthesurficiallayerofterrestrialsubstrate(0–5cmdepth)3m
apart1mparalleltothewater’sedge.Twosampleswerecollectedfromthemid-depthterres-
triallayer(25–30cmdepth)atthesamelocationsusingasoilprobeorEdelmanauger.For
BootjackandPolleyLakestheselattersamplesconstitutedclay-richhorizons.Twoadditional
sampleswereremovedfromthesub-aqueoussedimentlayerwithinthepermanentlysub-
mergedareaofthelittoralzone.Poreandsurfacewatersampleswerecollectedinseparate
bagsfromthesedimentlayer.Samplesforsulphateandsulfideanalysiswerepreservedin0.5%
zincacetate.Sampleswerefrozenondryiceimmediatelyaftersamplingandthenstoredat
-80˚Cuntilprocessing.PlotphotosweretakenforeachofthesamplelocationsusingaNikon
D300digitalSLRandincludedameterstickand1mX1mgridplacedinviewforreference.
Thesephotoswereusedtoqualitativelydescribesurfacemineralcomposition/grain-sizeand
amount/compositionofvegetationcover(Fig2).Habitatsvariedintheirestimateddegreeof
PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 4/25
Watershed-scalemicrobialmonitoring
Fig2.Sampleswerecollectedtorepresentthetypesofhabitatsaffectedbythespillincluding.(A)organic-richsoil
supportingadiversewetlandcommunityincludingliving,senescedanddecayedvegetation,(B)organic-dominated
lakeshorelackingextensivelivingvegetation,(C)minerallakeshoreincludingexposednativebedrock,cobbles,claysor
sands,(D)nativesubstrateswithevidenceoftailingsdeposition(visibleaccretionsoftailingssedimentsintermingled
withnativesubstrateorcoatingofplantstems/leaveswithfinetailings),(E)burialofnativesubstrateincoarsetailings
sands,(F)replacementofnativesubstratewithamixtureoffinetailingsandsands.Thetabletotherightpresents
meansurfacematerialestimates(n=5,1m2quadrats)forsamplesiteswithhabitatclassification(matchingcolors
fromfiguretotheleft).
https://doi.org/10.1371/journal.pone.0196032.g002
disturbancefromnovisibleimpactcharacteristicofBootjackLaketoerosionofallnativesub-
stratesandreplacementwithmaterialfromthetailingsimpoundment(characteristicofHazel-
tineCreek).Multiplequantitativeapproacheswereappliedtodeterminedistinctionsbetween
majorsubstratetypes(includingprevailingsurficialgrainsizesandorganiccontent).Inprac-
tice,freshlydepositedtailingswereeasilydistinguishedfromnativesubstratesbytheirlight
colorandmixtureofreddish-greysandsandfine,greysediments.
Physicalandchemicalparameters
Waterqualityparameters,pH,temperature,conductivity,dissolvedoxygen(DO),oxidation-
reductionpotential(ORP),andturbiditywererecordedinthefieldusingaYSIEXO2Multipa-
rameterWaterQualitySONDE(YSIInternational)forsurfacewaters(33 cmdepthdraft),
±3
adjacenttotheshorelinewhereterrestrialsampleswerecollectedandforporewaterimmedi-
atelyfollowingextractionfromauguredholes.Later,inthelaboratory,poreandsurfacewater
sampleswerethawedandanalyzedforsulphate(APHA[29]turbidimetricmethod4500-SO 2-
4
E),sulfide(methylenebluemethod4500-S2-D),ammonium(phenatemethod4500-NH F),
3
phosphate(ascorbicacidmethod4500-PE)andtotalnitrite/nitrate-N(cadmiumreduction
method4500-NO -Efollowedbycolorimetricmethod4500-NO -B).Physicalandchemical
3 2
metadataareavailablethroughDRYAD(datadryad.org;doi:10.5061/dryad.d52df21).
PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 5/25
Watershed-scalemicrobialmonitoring
Fig3.Cartooncross-sectionofanidealizedhydrosphererepresentinglayersthatweresampled.
https://doi.org/10.1371/journal.pone.0196032.g003
Microbialcommunityquantification
DNAextraction. JustpriortoDNAextraction,samplebagswithsolidssampleswere
thawedandthecontentshomogenizedmanually.Three250mgsubsamplesfromeachbag
weretakenforgenomicDNA(gDNA)extractionusingtheMoBioPowerSoil1DNAIsolation
kit(MoBioLaboratoriesInc.,CarlsbadCA,USA).ThethreegDNAextractionswerecom-
binedintoasingletube.TheconcentrationwasdeterminedusingaQubit13.0highsensitivity
fluorometricdoublestrandedDNAassay(ThermoFisherScientific,Waltham,MA,USA).
AmpliconPCR,librarypreparation,andsequencing. Smallsub-unitribosomalDNA
(SSUrDNA)ampliconswerepreparedforsequencingusingproceduresintheIllumina“16S
Fig4.Comparisonofshort-waveinfraredreflectance(representedinyellow-green)measuredinPolleyand
BootjackLakes48hourspost-damfailurevisually(inset)andasafunctionofdistanceawayfromthe
impoundmentfailure.
https://doi.org/10.1371/journal.pone.0196032.g004
PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 6/25
Watershed-scalemicrobialmonitoring
MetagenomicSequencingLibraryPreparationGuide”[30]withthefollowingmodifications:
PCRreactionsusedtheSsoFast™EvaGreen1Supermix(Bio-RadLaboratories(Canada)Ltd.,
Mississauga,ON,Canada),andprimersfortheV6-V8regionwereused:926f5’ AAACTYAA
AKGAATTGRCGGand1392r5’ ACGGGCGGTGTGTRC 3’.Afterrecordingtheconcentra-
tionineachindexed16SrDNAampliconpool,samplesweredilutedtoobtain4nMDNAin
20μLofDIH O.Paired-end300bpsequencingwasperformedonanIlluminaMiSeqatthe
2
UniversityofBritishColumbiaSequencingCentreintheFacultyofPharmaceuticalSciences
usingtheIlluminaMS-102-3003-MiSeqReagentKitv3(600cycles)andPhiXControlKitv3.
DNAformetagenomicwholegenomesequencingwaspurifiedfromthehighmolecular
weightbandon1%agarosegelusingexcisionandtheQIAquickGelExtractionKit(Qiagen)
andtheextractedgenomicDNAwasquantifiedusingQubitHSDNAassay(Thermo-Fisher
Scientific).Approximately1ngtotalDNAwasusedforlibrarypreparation.ADNAfragment
librarywithanindexateachendwasgeneratedforallsamplesusingtheNexteraXTDNA
samplepreparationkit(Illuminacatalogno.GA09115).Forqualitycontrolandsizeevalua-
tion,thesequencinglibrarywasanalyzedonaBioanalyzer2100(AgilentTechnologies).
Paired-endsequencingwasperformedasfortheampliconsequencing.Rawsequencefiles
frombothampliconandwholegenomesequencingweredepositedinthesequenceread
archive(SRA)onhttp://www.ncbi.nlm.nih.govunderprojectaccessionnumber
PRJNA433688.
Bioinformatics. SequencequalitywasinspectedusingFastQCversion0.10.1[31].Since
thequalityoftheforwardreadswasfarsuperiortothatforthereversereads,onlytheforward
readswereusedforfurtheranalysis.Therawforwardreadswerequalityfilteredusingthe
usearch[32]functionfastq_filtertotruncatetotheendsequencesifthePhredqualityscore
waslessthan15,removesequenceslessthan150basesinlength,andtodiscardreadswith
expectederrorsgreaterthan0.5andthosereadswithambiguousbasecalls.Highquality
sequenceswereclusteredinto97%sequencesimilaritycut-offoperationaltaxonomicunits
(OTUs)usingtheusearchfunctioncluster_otus.Taxonomicassignmenttorepresentative
sequencesfromeachOTUwasperformedwithMOTHURversion1.36.1[33]functionclas-
sify.seqsusingasthereferencetheSILVASSUdatabaseversion123[34].
WholegenomesequencereadswerepreprocessedtoremoveIlluminaandNexteraadapt-
ers,lowquality(Q<25)andshort(length<100bases)readsusingTrimGalore0.4.1(http://
www.bioinformatics.babraham.ac.uk/projects/trim_galore/).Highqualityreadswereassem-
bledwithvelvetandmeta-velvet[35].Openreadingframes(ORFs)werepredictedfromthe
assembledcontigsusingProdigalversion1.0.1,translatedtoaminoacidsequencesandanno-
tatedusingcustomdatabasesforrespiratorydenitrificationproteins(nitratereductase(NarG,
NapA),nitritereductasetoNO(NirK,NirS),nitritereductasetoammonia(NrfH)andnitrous
oxidereductase(NosZ)),selenatereductases(SerABC,SrdAandYgfK),dimethylsulfoxide
(DMSO)reductases[36],dissimilatorysulfitereductase(DsrAB)andtheproteindatabase
Uniref90.Allaminoacidsequencesforthecustomdatabases,excludingtheDMSOreductases,
weredownloadedfromtheUniprotrepository(http://www.uniprot.org/,accessed3July
2017).OpenreadingframepredictionandannotationwerecarriedoutusingtheMetapath-
waysversion2.5.1pipeline[37].Onlyhitswithbitscoresequaltoorgreaterthan80weretaken
intoconsideration.Consistencybetweenfunctionalannotationusingthedenitrification,sele-
natereductaseandsulfatereductasedatabasesandtheUniref90databasewasconfirmed.Since
selenatereductasesSerABandSrdAfromThaueraselenatisandBacillusselenatarsenatis,
respectively,belongtotheDMSOreductasefamilyofmolybdopterinoxidoreductases,ORFs
withhitstoSerABandSrdAaminoacidsequenceswerealsoqueriedagainstacustomDMSO
database[36]toconfirmtheirannotationtoselenatereductasewiththehighestbitscore.
PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 7/25
Watershed-scalemicrobialmonitoring
Microbialpopulationdiversity(richnessandevenness)ineachsamplewasassessedin
termsoftaxonomicrichness(#ofdetectedOTUs)andSimpson’sDiversity(1-D).TheOTU
tablewassubsampledwithMOTHURfunctionsub.sampleto3,000readspersampleandsplit
intothreeOTUtablesforeachlayerorhydrozone:surficial(0–5cm),deep(25–30)cmand
theaquaticsediments.
Beta-diversityofsampleswasexploredonnon-metricmultidimensionalscaling(NMDS)
ordinationplotsproducedusingBray-CurtisdissimilaritywiththeveganpackageoftoolsinR
version3.3.1.Statisticalcomparisonsofmicrobialpopulationcompositionswerecarriedout
usingUniFracdistances[38]withMOTHURfunctionsunifrac_weightedandunifrac_un-
weighted.Indicatorspeciesforeachbiome(BootjackLake,PolleyLake,QuesnelLakeand
HazeltonCreek)weredeterminedusingthemethodinDufrêneandLegendre[39]foreach
hydrozonelayer.
Results&discussion
Sitecharacteristics&chemistry
Siteswereclassifiedintodifferenthabitatsaccordingtothesurficialsubstrateappearance(Fig
2).HabitatsAtoCexhibitedanarrayofmacrophytes,organicdepositsandmineralsandlittle
tonoevidenceofthepresenceoftailings.Greytailingsandmagnetitesandspresentedadis-
tinctvisualcontrasttothedarkernativesubstrates,makingthemeasytodistinguishonthe
ground.TailingsatMountPolleyarederivedfromanalkalicporphyrycoppergolddeposit
wherecopperandcoppersulphidesareremovedpriortostorageinthetailingsimpoundment
[40].HabitatDexhibitedamixtureofdepositedtailingsandintactnativesubstrateswhilehab-
itatsEandFexhibitedextensivedepositedtailingsanddistinctionsweremadebasedonmate-
rialtexture(HabitatFexhibitingprimarilyfinegreytailings).Habitattypeswereassociated
closelywiththefourmajorwaterbodiesidentifiedinthisstudy.HazeltineCreekexhibitedthe
greatestimpactfromthedisturbance,withthedepthoferosionofsoilandparentmaterial
exceeding7minsomeareas,exposingbedrockanddepositingthick(~1-3m)tailingsand
associatedsandsinacorridorrangingfrom40–250meterswide.
TheshorelineofBootjackLakeconsistedofmostlyhabitatsAandBandlackeddeposited
tailings.TheLakeexhibitedextensivebackwaterdepressionsinitsterrestrialshorelinethat
wereorganicrich,under-layedwithanocclusivelayerofhighlyreducedclaybasedonclear
gleyingandlackofoxidizedrootingzones.Asaresult,BootjackLakesamplelayersweredis-
tinctlydifferentincomposition,wheresurficialsampleswerelargelycomprisedoforganic
material,andwiththeexceptionoftheoutlettoBootjackCreek,deepsampleswerecomposed
ofreducedclays.BootjackLakesedimentdepositswereprimarilyfinesedimentsimbeddedin
rockycobbles.HazeltineCreek,themainflowpathofthereleasedtailings,wasscouredand
almostentirelyreplacedbysedimentdepositedfromthetailingsoutwash(habitatF).Forboth
PolleyandQuesnelLakes,somesitesclosetothedepositionpathwerereplacedbytailings.
EventhoughalargeamountoftailingswaspushedintoPolleyLakeatthesouthend[4],there
werestillsomesiteswherenaturaldiversewetlandcommunitieswereintact.TheQuesnel
LakeshorelinesadjacenttotheHazeltineCreekdeltawheretailingsenteredthelakecontained
littlevegetationandcomprisedmostlydeepsanddepositswithexposedweatheredcobbles
(habitatsC&D).Onlysites20Aand21AonQuesnelLakewerevegetated,thoughonlythe
mostproximalsitestotheHazeltineoutflowexhibitedevidenceofimpactsfromthebreach
(depositedtailingsand/ordisplacedsediment).Themarkedlydifferentphysicalfeaturesofthe
QuesnelLakeshorelineversusthoseinBootjackLakeandatthenorthernendofPolleyLake
reflectconditiondifferencesthatexistedbeforethespill.QuesnelLake’sshorelineischaracter-
izedbyextensivewave-washedcobblesandlittlevegetationwithin10mofthelakeedge,even
PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 8/25
Watershed-scalemicrobialmonitoring
insitessampledatgreaterdistancesfromtheHazeltineCreekoutflow(site14Ais2.5kmfrom
theHazeltineCreekoutflowandexhibitedlittlevegetationcoverandnoevidenceofdeposited
tailings).
Soilmoistureandorganicmatter(SOM)contentsofthesamplescollectedasdetermined
byovendryingandloss-on-ignitiontestsvariedfrom1.7%to91.1%,and0to854g/Kgrespec-
tively,withSOMsignificantlyassociatedwithmoisturecontent(R2=0.74,F=401,P<0.001)
(S1Fig).Althoughtherewerenostatisticallysignificantdifferencesinmoisturecontentand
SOMbetweenlayersandhabitats,habitatAcontainedhigherSOMthantheotherhabitats,
withhabitatFsampleshavingthelowestamountsofSOM(S2Fig).WhencomparingSOMby
lake/stream,HazeltineCreeksurficialsamplescontainedsignificantlylowerSOMrelativeto
allPolleyLakesamplelayers(p =0.02,p =0.01,p =0.04)andBootjacksurficialsam-
surf deep sed
ples(p=0.02)basedonBonferroni-correctedMann-Whitneypairwisecomparisons(Kruskal-
WallisH=46.15,p<0.0001)(S3Fig).DeepsamplescollectedfromHazeltineCreekcontained
significantlylowerSOMthanPolleyLakedeep(p=0.02)andsurficialsamples(p=0.01).All
othercomparisonswerenotsignificant.
Pore-waterchemistrypropertiesweremeasuredinlakeshoresub-aqueoussediments(S2
TableandS4Fig).Temperaturevariationswereduetothetwodifferentsamplingperiods,6–8
and21–23October2014,duringwhichtheaverageporewatertemperatureswere13and9˚C,
respectively.PolleyandQuesnelLakesedimentshadsimilarcircum-neutralpHs(7.3 and
±0.7
7.8 ,respectively),whereasthepHinpore-waterfromBootjackLakewaslower(average
±0.3
6.5 ,p<0.01)andHazeltineCreekhigher(averageof8.9 ,p<0.001).Thesediments
±0.4 ±0.3
withinQuesnelLakewerethemostaerated(DO=7.7 mg/L)withthoseinBootjackLake
±1.4
havingthelowestoxygenconcentrations(DO=2.2 mg/L,p<0.001).Awiderangeofdis-
±0.8
solvedoxygenconcentrationsweremeasuredintheHazeltineCreekpore-waters.Conductivity
wasslightlyhigherinPolleyLakesedimentpore-waterscomparedwithBootjackandQuesnel
Lakes(p<0.05).NoconductivitydatawereobtainedforHazeltineCreek(sensormalfunction).
Theammonium-N,nitrate-NandphosphateconcentrationsinBootjackLakesediment
porewatersampleswereallbelow1mg/L(S2Table).Therewasmorenitrate-NintheQuesnel
Lakesediments(1.35 mg/L)withthehighestconcentrationfoundatsite12A(4.11
CI=0–2.92
mg/L),whichwasasitewheretailingsweredeposited.Nitrate-Nconcentrationswerealso
higherinHazeltineCreekthanintheotherlocations(averageof2.34 mg/L)withthe
CI=0–5.75
highestconcentrationfoundatsite36A(8.24mg/L).
InHazeltineCreek,theaveragesulphateconcentrationofthosesitesfromwhichpore
watercouldberecoveredwas251 mg/L.Onesitehadasulphateconcentrationas
CI=0–258
highas940mg/L(site36A)(S3Table),whichwasalsowherethehighestnitrate-Nconcentra-
tionwasmeasured.AtthePolleyLakesites,sulphateconcentrationswerehigherthanthosein
theotherLakes(BootjackandQuesnel),butnotashighinHazeltineCreek(averageof125
±56
mg/L).Siteswiththehighestsulphateconcentrationswereatlocationscontainingtailings
(sites58Aand60A).However,onefarsitethatwashighlyvegetated(site53A)alsohadahigh
sulphateconcentration.Sulphateconcentrationswerenotmeasuredintheporewaterssam-
pledfromBootjackLakeandQuesnelLake.SamplestakenfromQuesnelLakesincethe
impoundmentfailurefoundsulphatetobelessthan15mg/L[4].Takentogethersoilandpore
watercharacterizationtestsrevealedthatthedepositedtailingscreateddistincthabitatsand
environmentscomparedwithunaffectedsites.
Microbialcomposition
Diversityanddistribution. Atotalof1,650,752highqualitysequenceswithamean
lengthof227 baseswereobtainedfrom234sampleswithanaveragereadcountpersample
±40
PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 9/25
Watershed-scalemicrobialmonitoring
Fig5.Speciesrichness(sobs)anddiversity(Simpson’s1-D)ofmicrobialcommunitiesinthesurficial,deepandsedimentlayersinBootjackLake
(BJL),HazeltineCreek(HAZ),PolleyLake(POL)andQuesnelLake(QUE).Comparisonsarealsoshownforthesixhabitattypes(A-F)identifiedin
Fig2.ErrorBarsrepresentstandarderrorofthemean.
https://doi.org/10.1371/journal.pone.0196032.g005
of5,630 .Aftersubsamplingto3,000readspersample,15sampleswererejecteddueto
±2,839
insufficientsequencingdepth.Theimpactofthetailingsdepositionwasmostapparentfor
HazeltineCreekwherespeciesrichnesswasapproximatelyonethirdlessthanthatobserved
foralltheothersites.AlthoughHazeltineCreekwasscouredandmuchofitfilledwithtailings,
microorganismswerestilldetectedinalllayersofthosesitesthatyieldedenoughDNAfor
sequencing.Asexpected,theun-impactedreferencesite,BootjackLakehadthegreatestspe-
ciesrichness(observednumberofspecies(sobs)inFig5),especiallyinthesurficiallayers
thoughitonlydifferedsignificantlyfromHazeltineCreek(F =9.3,F =49.0,
3,21Sed 3,29Surf
F =17,p<0.0005).Aspre-eventmicrobialcommunitydataarenotavailable,the
3,26Deep
heighteneddiversityinBootjackLakemaybetheresultofpre-existingdifferencesamong
waterbodiesasBootjackexhibitedhighersoilorganicmatterreflectiveofelevated
productivity.
PLOSONE|https://doi.org/10.1371/journal.pone.0196032 April25,2018 10/25
Description:Tailings at Mount Polley are derived from an alkalic porphyry copper gold deposit where copper and copper .. deeper terrestrial layers of Bootjack Lake are Archaea about which little is known as these spe- cies are difficult to grow