Table Of ContentPOLYURETHANE FOAMS FROM
NOVEL SOY-BASED POLYOLS
_____________________________________________________________________
A Dissertation
presented to
the Faculty of the Graduate School
at the University of Missouri
_____________________________________________________________________
In Partial Fulfillment
of the Requirements for the Degree
Doctor of Philosophy
_____________________________________________________________________
by
YUAN-CHAN TU
Dr. Fu-hung Hsieh, Dissertation Supervisor
DECEMBER 2008
The undersigned, appointed by the dean of the Graduate School, have examined the
dissertation entitled
POLYURETHANE FOAMS FROM
NOVEL SOY-BASED POLYOLS
presented by Yuan-Chan Tu
a candidate for the degree of doctor of philosophy
and hereby certify that, in their opinion, it is worthy of acceptance.
Dr. Fu-hung Hsieh
Dr. Galen J. Suppes
Dr. Jinglu Tan
Dr. Mark R. Ellersieck
Dr. Shramik Sengupta
ACKNOWLEDGEMENTS
I would like to express the most sincere respect and gratitude to my advisor, Dr.
Fu-hung Hsieh. Because of the great opportunity he gave to me to join his research group,
I can not only finish my doctoral degree but also obtain lots of knowledge and
experiences from him. He is a wise mentor, a patient advisor, a respectful senior and a
good friend. Without his full support and guidance, I would not be able to complete this
work.
I would also like to deeply appreciate my master degree advisor, Dr. Wei-Han
Tao, who created this great opportunity for me. Without his help and encouragement, I
would not have a chance to do the research and get my doctoral degree in United States.
Although he passed away 4 years ago and could not see my success, I still want to tell
him that I made it, I did not let you down, I hope you can feel and share my joy and
success in heaven.
My appreciation also goes to my dissertation committee members Drs. Galen J.
Suppes, Jinglu Tan, Mark R. Ellersieck and Shramik Sengupta for their patience, valuable
time, suggestions and reviews of my dissertation. I must especially acknowledge Dr.
Galen J. Suppes for his great ideas and suggestions on my research.
My thanks go to Mr. Harold Huff, who is an invincible senior research specialist
in my lab, for his great contribution and advice on laboratory works and equipment to
make my research easier.
ii
My thanks must go to Dr. Pimphan (Aye) Kiatsimkul, Zuleica Lozada, Arnold
Ano-Os Lubguban and Hungyu Fan for their enormous contribution in the polyol project
and my research.
Finally, my appreciation goes to my family for their unconditional support. I
appreciate my parents for their love, encouragement and financial support. I would also
like to thank my brothers for taking care my parents while I am 10,000 miles away from
home. And I would especially like to thank my wife, who shared my joy and sorrow and
taking care of me for the past five years. Because of her unconditional and full support, I
do not need to worry about anything but my research. My sincerely appreciation to these
people who supported me while completing this work.
iii
TABLE OF CONTENTS
ACKNOWLEDGEMENTS.................................................................................................ii
LIST OF TABLES.......................................................................................................…..vii
LIST OF FIGURES…........................................................................................................ix
ABSTRACT......................................................................................................................xii
Chapter
1. INTRODUCTION..................................................................................................1
1.1 Background……..………………….…………………………...…………1
1.2 Polyurethane Chemistry………………..…………………………...……….2
1.2.1 Polyurethane Polymerization Reaction……...………………...………3
1.2.2 Gas-production Reaction.......................................................................4
1.3 Raw Materials.................................................................................................6
1.3.1 Isocyanates.............................................................................................6
1.3.2 Petroleum Polyols................................................................................11
1.3.3 Soy-based Polyols................................................................................14
REFERENCES...................................................................................................17
2. PHYSICAL PROPERTIES OF WATER-BLOWN RIGID POLYURETHANE
FOAMS FORM VEGETABLE OIL BASED POLYOLS...........................19
2.1 Abstract…………………………………………………….………………19
2.2 Introduction...................................................................................................20
2.3 Materials and Methods..................................................................................22
2.3.1 Materials..............................................................................................22
2.3.2 Hydroxyl Number Test........................................................................25
2.3.3 Experimental Design and Formulations...............................................26
2.3.4 Foaming Procedures.............................................................................26
2.3.5 Foam Property Measurements.............................................................27
2.4 Results and Discussion.................................................................................27
2.4.1 Hydroxyl Number................................................................................27
2.4.2 Thermal Conductivity..........................................................................28
2.4.3 Density and Compressive Strength......................................................29
2.4.4 Hydroxyl Number Effects...................................................................31
2.5 Conclusions...................................................................................................33
REFERENCES...................................................................................................35
iv
3. WATER-BLOWN RIGID AND FLEXIBLE POLYURETHANE FOAMS
CONTAINING EPOXIDIZED SOYBEAN OIL TRIGLYCERIDE..........47
3.1 Abstract.........................................................................................................47
3.2 Introduction...................................................................................................48
3.3 Materials and Methods..................................................................................49
3.3.1 Materials..............................................................................................49
3.3.2 Experimental Design and Formulations...............................................50
3.3.3 Foam Property Measurements.............................................................50
3.3.3.1 Rigid Polyurethane Foam Properties.......................................50
3.3.3.2 Flexible Polyurethane Foam Properties...................................51
3.3.4 Oil Extraction of Water-blown Rigid Polyurethane............................52
3.3.5 Morphology of Water-blown Rigid Polyurethane Foams...................52
3.4 Results and Discussion ................................................................................53
3.4.1 Density and Compressive Strength of Rigid Foam..............................53
3.4.2 Thermal Conductivity of Rigid Foam..................................................54
3.4.3 SEM Images of Rigid Foam................................................................55
3.4.4 Oil Extraction of Rigid Foam..............................................................56
3.4.5 Density of Flexible Foam.....................................................................57
3.4.6 Compression Force Deflection of Flexible Foam................................57
3.4.7 Constant Deflection Compression Set of Flexible Foam.....................58
3.4.8 Resilience (ball rebound test) of Flexible Foam..................................59
3.5 Conclusions...................................................................................................60
REFERENCES...................................................................................................61
4. THERMAL AND MECHANICAL BEHAVIOR OF FLEXIBLE
POLYURETHANE MOLDED PLASTIC AND WATER-BLOWN
FOAMS WITH EPOXIDIZED SOYBEAN OIL.........................................72
4.1 Abstract…………………….………………………………………………72
4.2 Introduction...................................................................................................73
4.3 Materials and Methods..................................................................................74
4.3.1 Materials..............................................................................................74
4.3.2 Flexible Polyurethane Foam................................................................75
4.3.3 Flexible Polyurethane Mold Plastic Film............................................76
4.3.4 Flexible Polyurethane Foam Properties......……………...………….76
4.3.5 Dynamic Mechanical Analysis............................................................77
4.3.6 Differential Scanning Calorimetry (DSC)...........................................78
4.3.7 Fourier Transform Infrared Spectroscopy with Attenuated Total
Reflectance(FTIR-ATR)................................................................78
4.4 Results and Discussion.................................................................................79
4.4.1 Physical Properties of Flexible Polyurethane Foams………...……..79
4.4.2 Dynamic Mechanical Analysis of Polyurethane Films........................81
4.4.3 Differential Scanning Calorimetry Analysis Polyurethane Films.......82
4.4.4 FTIR-ATR Analysis of Polyurethane Foams and Films......................83
4.5 Conclusions...................................................................................................85
v
REFERENCES...................................................................................................87
5. PHYSICAL PROPERTIES OF WATER-BLOWN RIGID
POLYURETHANE FOAMS CONTAINING ESBO IN
DIFFERENT ISOCYANATE INDICES....................................................100
5.1 Abstract………………………………………………………….………..100
5.2 Introduction.................................................................................................101
5.3 Materials and Methods................................................................................102
5.3.1 Materials............................................................................................102
5.3.2 Experimental Design and Formulation..............................................103
5.3.3 Rigid Polyurethane Foaming Temperature Measurement.................103
5.3.4 Rigid Polyurethane Foam Property Measurement.............................104
5.3.5 Modeling of Compressive Strength, Density, and
Thermal Conductivity................................................................104
5.4 Results and Discussion…………………………………………………..105
5.4.1 Density...............................................................................................105
5.4.2 Compressive Strength........................................................................107
5.4.3 Thermal Conductivity........................................................................108
5.4.4 Model Validation...............................................................................109
5.4.5 Foaming Temperature........................................................................110
5.5 Conclusions.................................................................................................111
REFERENCES.................................................................................................113
6. CONCLUSIONS AND RECOMMENDATIONS ............................................125
VITA.......................................................................................................................128
vi
LIST OF TABLES
Table Page
1.1. Physical properties of polyisocyanates.......................................................................10
1.2. The relation between the properties of polyols and applications of
polyurethane polymer.........................................................................................13
2.1. The derivatives from soybean oil, epoxidized soybean oil, and castor oil
used in this study.................................................................................................37
2.2. Formulations for water-blown rigid polyurethane foam with 50% of
soybean oil based polyols...................................................................................38
2.3. Hydroxyl numbers of soybean oil, epoxidized soybean oil, and castor oil
based polyols......................................................................................................39
3.1. Formulations for water-blown rigid polyurethane foam with different
percentages of epoxidized soybean oil...............................................................63
3.2. Formulations for water-blown flexible polyurethane foam with different
percentages of epoxidized soybean oil...............................................................64
4.1. Formulations for water-blown flexible polyurethane foam with different
percentages of epoxidized soybean oil...............................................................89
4.2. Physical properties of flexible polyurethane foams containing 0 to 50%
epoxidized soybean oil………...........………………………………………….90
4.3. Tanδ maximum and ∆c of flexible polyurethane molded plastic containing
p
0 to 50% epoxidized soybean oil........................................................................91
4.4. Assignments of functional groups in FTIR-ATR spectra.................................92
5.1. Formulations for water-blown rigid polyurethane foam with different
percentage of epoxidized soybean oil and isocyanate index............................115
vii
5.2. Experimental and predicted thermal conductivity, density and
compressive strength.........................................................................................116
viii
LIST OF FIGURES
Figure Page
1.1. Chemical structure of methylene diphenyl diisocyanate (MDI)...................................7
1.2. Chemical structure of toluene diisocyanate (TDI)............................................8
1.3. Chemical structure of (a) 1,6-hexane diisocyanate (HDI), (b) isophorone
diisocyanate (IPDI), (c) 1,5-napthalene diisocyanate (NDI), and
(d) 1,4-phenylene diisocyanate (PDI)...................................................................9
1.4. Chemical structure of common polyether polyols......................................................12
1.5. The chemical method to produce alkoxyl hydroxyl soybean oil................................15
2.1. Procedures of preparing polyurethane foams in the laboratory..................................40
2.2. Representative chemical structure of epoxidized soybean oil (ESBO)......................41
2.3. Thermal conductivity of foams made with polyols containing 50%
Voranol® 490 and 50% of various vegetable oil based polyols.........................42
2.4. Density vs. compressive strength of polyurethane foams made with
soybean oil polyols.............................................................................................43
2.5. Thermal conductivity of foams vs. hydroxyl number of soybean oil Polyols............44
2.6. Density of foams vs. hydroxyl number of soybean oil polyols..................................45
2.7. Compressive strength of foams vs. hydroxyl number of soybean oil Polyols............46
3.1. The chemical structure of soybean oil triglyceride.....................................................65
3.2. Compressive strength (●), density (■) and thermal conductivity (▲) of
water-blown rigid polyurethane foams in different epoxidized soybean
oil percentages....................................................................................................66
ix