Table Of ContentApplied Mathematical Sciences
Volume 115
Editors
S.S.Antman J.E.Marsden
DepartmentofMathematics ControlandDynamicalSystems,
and 107-81
InstituteforPhysical CaliforniaInstituteofTechnology
ScienceandTechnology Pasadena,CA91125
UniversityofMaryland USA
CollegePark,MD20742-4015 [email protected]
USA
[email protected]
L.Sirovich
LaboratoryofAppliedMathematics
DepartmentofBiomathematical
Sciences
MountSinaiSchoolofMedicine
NewYork,NY10029-6574
[email protected]
Advisors
L.Greengard P.Holmes J.Keener J.Keller
R.Laubenbacher B.J.Matkowsky A.Mielke
C.S.Peskin K.R.Sreenivasan A.Stevens A.Stuart
Forfurthervolumes:
http://www.springer.com/series/34
Michael E. Taylor
Partial Differential
Equations I
Basic Theory
Second Edition
ABC
MichaelE.Taylor
DepartmentofMathematics
UniversityofNorthCarolina
ChapelHill,NC27599
USA
[email protected]
ISSN0066-5452
ISBN978-1-4419-7054-1 e-ISBN978-1-4419-7055-8
DOI10.1007/978-1-4419-7055-8
SpringerNewYorkDordrechtHeidelbergLondon
LibraryofCongressControlNumber:2010937758
Mathematics Subject Classification (2010): 35A01, 35A02, 35J05, 35J25, 35K05, 35L05, 35Q30,
35Q35,35S05
(cid:2)c SpringerScience+BusinessMedia,LLC1996,2011
Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten
permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,
NY 10013, USA), except for brief excerpts inconnection with reviews orscholarly analysis. Use
in connection with any form of information storage and retrieval, electronic adaptation, computer
software,orbysimilarordissimilarmethodologynowknownorhereafterdevelopedisforbidden.
Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,evenifthey
arenotidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyare
subjecttoproprietaryrights.
Printedonacid-freepaper
SpringerispartofSpringerScience+BusinessMedia(www.springer.com)
To mywifeanddaughter,JaneHawkins andDianeTaylor
Contents
ContentsofVolumesIIandIII ................................................ xi
Preface............................................................................ xiii
1 BasicTheoryofODEandVectorFields................................. 1
1 Thederivative .......................................................... 3
2 FundamentallocalexistencetheoremforODE....................... 9
3 Inversefunctionandimplicitfunctiontheorems...................... 12
4 Constant-coefficientlinearsystems;exponentiationofmatrices .... 16
5 Variable-coefficientlinearsystemsofODE:Duhamel’sprinciple... 26
6 Dependenceofsolutionsoninitialdataandonotherparameters.... 31
7 Flowsandvectorfields................................................. 35
8 Liebrackets............................................................. 40
9 Commutingflows;Frobenius’stheorem.............................. 43
10 Hamiltoniansystems................................................... 47
11 Geodesics............................................................... 51
12 Variationalproblemsandthestationaryactionprinciple............. 59
13 Differentialforms...................................................... 70
14 Thesymplecticformandcanonicaltransformations................. 83
15 First-order,scalar,nonlinearPDE..................................... 89
16 Completelyintegrablehamiltoniansystems.......................... 96
17 Examplesofintegrablesystems;centralforceproblems.............101
18 Relativisticmotion.....................................................105
19 Topologicalapplicationsofdifferentialforms........................110
20 Criticalpointsandindexofavectorfield.............................118
A Nonsmoothvectorfields...............................................122
References..............................................................125
2 TheLaplaceEquationandWaveEquation .............................127
1 Vibratingstringsandmembranes......................................129
2 Thedivergenceofavectorfield.......................................140
3 Thecovariantderivativeanddivergenceoftensorfields.............145
4 TheLaplaceoperatoronaRiemannianmanifold ....................153
5 Thewaveequationonaproductmanifoldandenergyconservation 156
6 Uniquenessandfinitepropagationspeed .............................162
7 Lorentzmanifoldsandstress-energytensors .........................166
8 Moregeneralhyperbolicequations;energyestimates................172
viii Contents
9 Thesymbolofadifferentialoperatorandageneral
Green–Stokesformula.................................................176
10 TheHodgeLaplacianonk-forms.....................................180
11 Maxwell’sequations...................................................184
References..............................................................194
3 FourierAnalysis,Distributions,
andConstant-CoefficientLinearPDE ...................................197
1 Fourierseries...........................................................198
2 Harmonicfunctionsandholomorphicfunctionsintheplane........209
3 TheFouriertransform..................................................222
4 Distributionsandtempereddistributions..............................230
5 Theclassicalevolutionequations .....................................244
6 Radialdistributions,polarcoordinates,andBesselfunctions........263
7 ThemethodofimagesandPoisson’ssummationformula...........273
8 Homogeneousdistributionsandprincipalvaluedistributions .......278
9 Ellipticoperators.......................................................286
10 Localsolvabilityofconstant-coefficientPDE ........................289
11 ThediscreteFouriertransform ........................................292
12 ThefastFouriertransform.............................................301
A ThemightyGaussianandthesublimegammafunction..............306
References..............................................................312
4 SobolevSpaces..............................................................315
1 SobolevspacesonRn..................................................315
2 Thecomplexinterpolationmethod....................................321
3 Sobolevspacesoncompactmanifolds................................328
4 Sobolevspacesonboundeddomains .................................331
5 TheSobolevspacesHs.(cid:2)/ ...........................................338
0
6 TheSchwartzkerneltheorem..........................................345
7 Sobolevspacesonroughdomains.....................................349
References..............................................................351
5 LinearEllipticEquations..................................................353
1 ExistenceandregularityofsolutionstotheDirichletproblem ......354
2 Theweakandstrongmaximumprinciples............................364
3 TheDirichletproblemontheballinRn ..............................373
4 TheRiemannmappingtheorem(smoothboundary).................379
5 TheDirichletproblemonadomainwitharoughboundary.........383
6 TheRiemannmappingtheorem(roughboundary)...................398
7 TheNeumannboundaryproblem .....................................402
8 TheHodgedecompositionandharmonicforms......................410
9 NaturalboundaryproblemsfortheHodgeLaplacian................421
10 Isothermalcoordinatesandconformalstructuresonsurfaces .......438
11 Generalellipticboundaryproblems...................................441
12 Operatorpropertiesofregularboundaryproblems...................462
Contents ix
A Spacesofgeneralizedfunctionsonmanifoldswithboundary.......471
B TheMayer–VietorissequenceindeRhamcohomology..............475
References..............................................................478
6 LinearEvolutionEquations...............................................481
1 Theheatequationandthewaveequationonboundeddomains.....482
2 Theheatequationandwaveequationonunboundeddomains ......490
3 Maxwell’sequations...................................................496
4 TheCauchy–Kowalewskytheorem ...................................499
5 Hyperbolicsystems ....................................................504
6 Geometricaloptics.....................................................510
7 Theformationofcaustics..............................................518
8 Boundarylayerphenomenafortheheatsemigroup..................535
A SomeBanachspacesofharmonicfunctions..........................541
B Thestationaryphasemethod ..........................................543
References..............................................................545
A OutlineofFunctionalAnalysis............................................549
1 Banachspaces..........................................................549
2 Hilbertspaces ..........................................................556
3 Fre´chetspaces;locallyconvexspaces.................................561
4 Duality..................................................................564
5 Linearoperators........................................................571
6 Compactoperators.....................................................579
7 Fredholmoperators ....................................................593
8 Unboundedoperators ..................................................596
9 Semigroups.............................................................603
References..............................................................615
B Manifolds,VectorBundles,andLieGroups.............................617
1 Metricspacesandtopologicalspaces.................................617
2 Manifolds...............................................................622
3 Vectorbundles..........................................................624
4 Sard’stheorem..........................................................626
5 Liegroups ..............................................................627
6 TheCampbell–Hausdorffformula ....................................630
7 RepresentationsofLiegroupsandLiealgebras......................632
8 RepresentationsofcompactLiegroups...............................636
9 RepresentationsofSU(2)andrelatedgroups.........................641
References..............................................................647
Index..............................................................................649
Description:The first of three volumes on partial differential equations, this one introduces basic examples arising in continuum mechanics, electromagnetism, complex analysis and other areas, and develops a number of tools for their solution, in particular Fourier analysis, distribution theory, and Sobolev spaces. These tools are then applied to the treatment of basic problems in linear PDE, including the Laplace equation, heat equation, and wave equation, as well as more general elliptic, parabolic, and hyperbolic equations.The book is targeted at graduate students in mathematics and at professional mathematicians with an interest in partial differential equations, mathematical physics, differential geometry, harmonic analysis, and complex analysis.