Table Of ContentJOINT PERFORMANCE CHARACTERIZATION OF BONDED WHITETOPPING
OVERLAYS
by
Manik Barman
Bachelor of Technology in Civil Engineering, North Eastern Regional Institute of Science and
Technology, India, 2002
Master of Technology in Civil Engineering, Indian Institute of Technology (IIT) Kharagpur,
India 2004
Submitted to the Graduate Faculty of
The Swanson School of Engineering in partial fulfillment
of the requirements for the degree of
Doctor of Philosophy
University of Pittsburgh
2014
UNIVERSITY OF PITTSBURGH
SWANSON SCHOOL OF ENGINEERING
This dissertation was presented
by
Manik Barman
It was defended on
November 8, 2013
and approved by
John Brigham, Ph.D., Assistant Professor
Department of Civil and Environmental Engineering
Donald J. Janssen, Ph.D., Associate Professor,
Civil and Environmental Engineering, University of Washington, Seattle
Luis E. Vallejo, Ph.D., Professor
Department of Civil and Environmental Engineering
Dissertation Director: Julie M. Vandenbossche, Assistant Professor
Department of Civil and Environmental Engineering
ii
Copyright © by Manik Barman
2014
iii
JOINT PERFORMANCE CHARACTERIZATION OF BONDED WHITETOPPING
OVERLAYS
Manik Barman, Ph.D.
University of Pittsburgh, 2014
Poor joint performance in whitetopping overlays increases the magnitude of the interlayer
debonding stress and load related stress, which can result in corner and longitudinal cracks.
However, currently available whitetopping design procedures do not account for the joint
performance. Fiber reinforced concrete (FRC) is commonly used in constructing these overlays
but the contribution of the fiber to load transfer has never been quantified either.
Under the scope of this dissertation, a new, economical, small-scale joint performance
characterization procedure (B ) was developed. The results from the B procedure were
ALT ALT
validated by comparing them to the results from large scale joint performance tests (S ). The
ALT
joint performances of one plain concrete (PC) and two FRC mixtures were characterized with
respect to mixture type, crack width and number of load cycles. Load transfer efficiency (LTE)
and dissipated energy ratio (DER) prediction models were developed for all the mixtures. It was
found that FRC provides a 15 to 25 percent higher joint performance as compared to PC. The
fiber plays a larger role in load transfer when the joint is fatigued. Interestingly fibers do not
fatigue even after 10 million load cycles. Using finite element analysis, a relationship was
developed for determining the joint stiffness (AGG*) for whitetopping overlay. It was found that
the load-related stress can be reduced by 6 percent with application of FRC while the interface
debonding stress can be reduced by 50 to 72 percent.
iv
TABLE OF CONTENTS
ACKNOWLEDGEMENTS ................................................................................................. XXVI
1.0 INTRODUCTION ............................................................................................... 1
1.1 PROBLEM STATEMENT ................................................................................. 1
1.2 RESEARCH SIGNIFICANCE AND OBJECTIVES....................................... 2
1.3 STRUCTURE OF THE DISSERTATION ....................................................... 5
2.0 LITERATURE REVIEWS AND BACKGROUND ......................................... 5
2.1 WHITETOPPING DESIGN PROCEDURES .................................................. 8
2.2 BONDED WHITETOPPING FAILURE MODES .......................................... 9
2.3 JOINT PERFORMANCE TERMINOLOGIES ............................................. 11
2.4 JOINT PERFORMANCE MEDIUM .............................................................. 14
2.5 JOINT CRACK WIDTH RANGES................................................................. 19
2.6 INFLUENCE OF JOINT PERFORMANCE ................................................. 23
2.6.1 Debonding of HMA Layer ......................................................................... 23
2.6.2 Stress in the Loaded Slab ........................................................................... 24
2.7 JOINT PERFORMANCE EVALUATION PROCEDURES IN
LITERATURE ................................................................................................... 24
2.8 FACTORS INFLUENCING JOINT PERFORMANCE ............................... 33
2.8.1 Volumetric Surface Texture ....................................................................... 33
2.8.2 Crack Width ................................................................................................ 44
v
2.8.3 Number of Load Applications ................................................................... 51
2.8.4 Thickness of the Slab .................................................................................. 52
2.9 FIBER REINFORCED CONCRETE IN JOINT PERFORMANCE
BENEFITS ......................................................................................................... 53
2.10 CONCLUSIONS ................................................................................................ 60
3.0 DEVELOPMENT OF JOINT PERFORMANCE SETUPS ......................... 61
3.1 INTRODUCTION ............................................................................................. 61
3.2 BEAM ACCELERATED LOAD TESTING (B ) ...................................... 62
ALT
3.2.1 Setup Design Principle ................................................................................ 62
3.2.2 Components ................................................................................................. 64
3.2.3 Load Magnitude and Location .................................................................. 72
3.2.4 Specimen Preparation ................................................................................ 82
3.2.5 Test Procedure ............................................................................................ 87
3.3 SLAB ACCELERATED LOAD TESTING (S ) ........................................ 89
ALT
3.3.1 Setup Design Principle ................................................................................ 89
3.3.2 Components ................................................................................................. 89
3.3.3 Specimen Preparation ................................................................................ 95
3.3.4 Test Procedure ............................................................................................ 98
3.4 JOINT PERFORMANCE EVALUATION PROCEDURE ........................ 101
3.4.1 Joint Performance through LTE ............................................................. 101
3.4.1.1 B .................................................................................................... 101
ALT
3.4.1.2 S ..................................................................................................... 103
ALT
3.4.2 Joint Performance through DER ............................................................ 105
3.4.2.1 B .................................................................................................... 105
ALT
vi
3.4.2.2 S ..................................................................................................... 109
ALT
3.5 CONCLUSIONS .............................................................................................. 116
4.0 MATERIAL PROPERTIES AND LABORATORY TEST PLAN ............ 118
4.1 INTRODUCTION ........................................................................................... 118
4.2 MATERIALS ................................................................................................... 118
4.2.1 Aggregates and Cement ............................................................................ 118
4.2.2 Fibers .......................................................................................................... 120
4.2.2.1 Types .................................................................................................. 120
4.2.2.2 Volume fraction ................................................................................. 122
4.2.3 Concrete Mixture Designs ........................................................................ 124
4.3 CONCRETE MATERIAL PROPERTIES ................................................... 125
4.4 TEST PLAN FOR THE B PROCEDURE ............................................... 128
ALT
4.5 TEST PLAN FOR THE S PROCEDURE ............................................... 137
ALT
4.6 CONCLUSIONS .............................................................................................. 138
5.0 LABORATORY TEST RESULTS AND DISCUSSIONS ........................... 139
5.1 INTRODUCTION ........................................................................................... 139
5.2 PROPERTIES OF CONCRETE MIXTURES ............................................. 140
5.2.1 PC Mixtures ............................................................................................... 140
5.2.2 FRC Mixtures ............................................................................................ 141
5.2.3 Comparison between Mixtures ................................................................ 144
5.3 JOINT PERFORMANCE IN TERMS OF LTE .......................................... 148
5.3.1 Joint Performance through B ............................................................. 150
ALT
5.3.1.1 PC mixture ......................................................................................... 150
5.3.1.2 FRC1 mixture .................................................................................... 158
vii
5.3.1.3 FRC2 mixture .................................................................................... 167
5.3.1.4 Comparison of LTE results between the mixture types .............. 174
B
5.3.1.5 Regression model for LTE .............................................................. 180
B
5.3.2 Joint Performance through S ............................................................. 195
ALT
5.3.2.1 PC mixture ......................................................................................... 195
5.3.2.2 FRC1 mixture .................................................................................... 201
5.3.2.3 FRC2 mixture .................................................................................... 208
5.3.2.4 Comparison of LTE results between the mixture types ............... 213
S
5.3.2.5 Regression model for LTE .............................................................. 216
S
5.3.3 Comparison between LTE vs LTE ....................................................... 231
B S
5.4 JOINT PERFORMANCE IN TERMS OF DER .......................................... 237
5.4.1 B ............................................................................................................ 237
ALT
5.4.1.1 Regression models for DER ............................................................ 242
B
5.4.2 S ............................................................................................................. 254
ALT
5.4.2.1 Regression models for DER ............................................................ 257
S
5.4.3 Relationship between DER vs DER ..................................................... 269
S B
5.5 RELATIONSHIP BETWEEN LTE AND DER ........................................ 272
S B
5.6 RELATIONSHIP BETWEEN DER AND LTE ........................................ 275
S B
5.7 SELECTION OF BEST PROCEDURE TO ESTIMATE LTE ................ 278
S
5.8 RECOMMENDATION FOR NUMBERS OF SPECIMENS IN B TEST
ALT
........................................................................................................................... 280
5.9 CONCLUSIONS .............................................................................................. 281
6.0 MODELING OF JOINTS IN BONDED WHITETOPPING ...................... 284
6.1 INTRODUCTION ........................................................................................... 284
viii
6.2 LTE VS AGG* RELATIONSHIP .................................................................. 285
6.2.1 Fully Bonded Cases ................................................................................... 292
6.2.2 Partially Bonded Cases ............................................................................. 294
6.2.2.1 Load transfer contribution by the HMA layer ............................... 303
6.2.2.2 LTE vs AGG* for different whitetopping designs ..................... 306
total
6.2.2.3 Proposed method for determining AGG* for whitetopping design
308
6.3 JOINT PERFORMANCE VS DESIGN STRESS ........................................ 310
6.4 INFLUENCE OF INTERFACE BONDING ON THE DESIGN STRESS 319
6.5 JOINT PERFORMANCE VS INTERFACE DEBONDING STRESS ...... 323
6.6 ADVANTAGES OF FRC MIXTURES OVER PC MIXTURE .................. 329
6.7 CONCLUSIONS .............................................................................................. 331
7.0 CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE STUDY 335
7.1 INTRODUCTION ........................................................................................... 335
7.2 FINDINGS ........................................................................................................ 335
7.3 RECOMMENDATION FOR FUTURE STUDIES ...................................... 340
APPENDIX A ............................................................................................................................ 341
APPENDIX B ............................................................................................................................ 351
BIBLIOGRAPHY ..................................................................................................................... 358
ix
LIST OF TABLES
Table 2.1. Summary of the design features for Cells 94, 95 and 96 in MnROAD ....................... 15
Table 2.2. Summary of the design features for Cell 93 at MnROAD .......................................... 20
Table 2.3. Properties of a few structural synthetic fibers and FRC in the Roesler et al. 2008
study. ................................................................................................................................. 57
Table 3.1. Input and FEM modeling features for the concrete slab model. .................................. 73
Table 3.2. Target and calculated LTEs for determination of AF. ................................................. 79
Table 3.3. Magnitude of the maximum deflection and the slope of the deflection profile for
different load magnitudes and locations. .......................................................................... 80
Table 3.4. Values of A to A for the load and deflection profiles shown in Figure 3.36 and
1 8
Figure 3.37. ..................................................................................................................... 108
Table 3.5. DE, DED and DER for the load and deflection profiles demonstrated in Figure 3.36
and Figure 3.37. .............................................................................................................. 109
Table 3.6. Values of B to B for the example shown in Figure 3.40. ........................................ 116
1 8
Table 3.7. Cumulative DE, DED and DER for the example shown in Figure 3.40. .................. 116
Table 4.1. Physical characteristics of the coarse aggregates. ..................................................... 119
Table 4.2. Types of fibers used in whitetopping projects constructed in Illinois ....................... 121
Table 4.3. Features of the selected fibers for the present study. ................................................. 122
Table 4.4. Volume fraction and dosages of two selected fibers ................................................. 124
Table 4.5. Target concrete mixture design. ................................................................................. 125
Table 4.6. Test for characterizing concrete properties. ............................................................... 127
Table 4.7. Specimen matrix for B procedure. ........................................................................ 137
ALT
x
Description:I would like to thank my friends at Banaras Hindu University, India for their cooperation during my Ph. The finite element analysis software, Abaqus rigidly connected by a feature called the 'Tie' constraint in the Abaqus CAE.