Table Of ContentValimLevitin
HighTemperatureStrain
ofMetalsandAlloys
RelatedTitles
Herlach,D.M.(ed.)
SolidificationandCrystallization
322pageswith204figuresand20tables
2004
Hardcover
ISBN3-527-31011-8
Leyens,C.,Peters,M.(eds.)
TitaniumandTitaniumAlloys
FundamentalsandApplications
532pageswith349figuresand56tables
2003
Hardcover
ISBN3-527-30534-3
Westbrook,J.H.(ed.)
IntermetallicCompounds4VSet
1310pages
2000
Softcover
ISBN0-471-60814-9
Mughrabi,H.(ed.)
MaterialsScienceandTechnology
AComprehensiveTreatment–Volume6
PlasticDeformationandFractureofMaterials
710pageswith436figuresand19tables
1992
Hardcover
ISBN3-527-26819-7
Valim Levitin
High Temperature Strain
of Metals and Alloys
PhysicalFundamentals
TheAuthor AllbookspublishedbyWiley-VCHarecarefully
produced.Nevertheless,authors,editorsand
Prof.ValimLevitin publisherdonotwarranttheinformationcontained
NationalTechnicalUniversity inthesebooks,includingthisbook,tobefreeof
Zaporozhye,Ukraine errors.Readersareadvisedtokeepinmindthat
[email protected] statements,data,illustrations,proceduraldetails
orotheritemsmayinadvertentlybeinaccurate.
Cover:
“Blish”turbine LibraryofCongressCardNo.:
UniversityofAppliedSciences appliedfor
Gießen-Friedberg,
DepartmentMND,MTU BritishLibraryCataloguing-in-PublicationData:
Acataloguerecordforthisbookisavailablefromthe
BritishLibrary.
Bibliographicinformationpublishedby
DieDeutscheBibliothek
DieDeutscheBibliothekliststhispublicationin
theDeutscheNationalbibliografie;detailed
bibliographicdataisavailableintheInternetat
http://dnb.ddb.de
(cid:1)c 2006WILEY-VCHVerlagGmbH&CoKGaA,
Weinheim
Allrightsreserved(includingthoseoftranslation
intootherlanguages).Nopartofthisbookmaybe
reproducedinanyform–byphotocopying,
microfilm,oranyothermeans–nortransmittedor
translatedintoamachinelanguagewithoutwritten
permissionfromthepublishers.Registerednames,
trademarks,etc.usedinthisbook,evenwhennot
specificallymarkedassuch,arenottobeconsidered
unprotectedbylaw.
Typesetting:SteingraeberSatztechnikGmbH,
Ladenburg
Printing:StraussGmbH,Mörlenbach
Binding:Litges&DopfBuchbindereiGmbH,
Heppenheim
Cover:aktivComm,Weinheim
PrintedintheFederalRepublicofGermany
Printedonacid-freepaper
ISBN-13:978-3-527-31338-9
ISBN-10:3-527-31338-9
V
Contents
Introduction 1
1 MacroscopicCharacteristicsofStrainofMetallicMaterials
atHighTemperatures 5
2 InsituX-rayInvestigationTechnique 13
2.1 ExperimentalInstallation 13
2.2 MeasurementProcedure 15
2.3 MeasurementsofStructuralParameters 17
2.4 DiffractionElectronMicroscopy 20
2.5 AmplitudeofAtomicVibrations 21
2.6 MaterialsunderInvestigation 23
2.7 Summary 24
3 StructuralParametersinHigh-TemperatureDeformedMetals 25
3.1 EvolutionofStructuralParameters 25
3.2 DislocationStructure 30
3.3 DistancesbetweenDislocationsinSub-boundaries 34
3.4 Sub-boundariesasDislocationSourcesandObstacles 34
3.5 DislocationsinsideSubgrains 35
3.6 VacancyLoopsandHelicoids 39
3.7 TotalCombinationofStructuralPeculiarities
ofHigh-temperatureDeformation 40
3.8 Summary 41
4 PhysicalMechanismofStrainatHighTemperatures 43
4.1 PhysicalModelandTheory 43
4.2 VelocityofDislocations 45
4.3 DislocationDensity 49
4.4 RateoftheSteady-StateCreep 51
HighTemperatureStrainofMetalsandAlloys,ValimLevitin(Author)
Copyright(cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim
ISBN:3-527-313389-9
VI Contents
4.5 EffectofAlloying:RelationshipbetweenCreepRate
andMean-SquareAtomicAmplitudes 54
4.6 FormationofJogs 55
4.7 SignificanceoftheStackingFaultsEnergy 57
4.8 StabilityofDislocationSub-boundaries 58
4.9 ScopeoftheTheory 62
4.10 Summary 64
5 SimulationoftheParametersEvolution 67
5.1 ParametersofthePhysicalModel 67
5.2 Equations 68
5.2.1 StrainRate 68
5.2.2 ChangeintheDislocationDensity 68
5.2.3 TheDislocationSlipVelocity 69
5.2.4 TheDislocationClimbVelocity 69
5.2.5 TheDislocationSpacinginSub-boundaries 70
5.2.6 VariationoftheSubgrainSize 71
5.2.7 SystemofDifferentialEquations 71
5.3 ResultsofSimulation 71
5.4 DensityofDislocationsduringStationaryCreep 77
5.5 Summary 80
6 High-temperatureDeformationofSuperalloys 83
6.1 γ(cid:2)PhaseinSuperalloys 83
6.2 ChangesintheMatrixofAlloysduringStrain 88
6.3 InteractionofDislocationsandParticles 89
6.4 CreepRate.LengthofDislocationSegments 95
6.5 MechanismofStrainandtheCreepRateEquation 96
6.6 Compositionoftheγ(cid:2)PhaseandAtomicVibrations 102
6.7 InfluenceoftheParticleSizeandConcentration 104
6.8 ThePredictionofProperties 106
6.9 Summary 109
7 SingleCrystalsofSuperalloys 111
7.1 EffectofOrientationonProperties 111
7.2 DeformationatLowerTemperatures 116
7.3 DeformationatHigherTemperatures 124
7.4 OntheCompositionofSuperalloys 129
7.5 Rafting 130
7.6 EffectofCompositionandTemperatureonγ/γ(cid:2)Misfit 136
7.7 OtherCreepEquations 137
7.8 Summary 141
VII
8 DeformationofSomeRefractoryMetals 143
8.1 TheCreepBehavior 143
8.2 AlloysofRefractoryMetals 149
8.3 Summary 155
Supplements 157
Supplement1:OnDislocationsintheCrystalLattice 157
Supplement2:OnScrewComponentsinSub-boundary
DislocationNetworks 161
Supplement3:CompositionofSuperalloys 163
References 164
Acknowledgements 168
Index 169
1
Introduction
Whoevercontrolsthematerials,
controlsthescienceandthetechnology
E.Plummer
Moderncivilizationisbasedonfourfoundations:materials,energy,tech-
nology,andinformation.
Metalsandalloysarematerials,whichhavebeenwidelyusedbymankind
for thousands of years, and this is no mere chance: metals have many re-
markableproperties.One–theirstrengthathightemperatures–isofgreat
scientificandpracticalimportance.
Thedurabilityofgasturbineengines,steampipelines,reactors,aeroplanes,
andaerospacevehiclesdependsdirectlyontheabilityoftheirpartsandunits
towithstandchangesinshape.Ontheotherhand,asignificantmobilityof
crystal lattice defects and of atoms plays an important role in the behavior
ofmaterialsunderappliedstressesathightemperaturesandisalsoofgreat
interestformaterialsscienceresearchandpracticalapplications.
Mechanical tests were historically the first method of investigating the
high-temperaturedeformationphenomenon.Thetechniqueoriginatedfrom
practicalneedstousemetallicmaterialsforvariousmachines.Adeepinves-
tigationofmaterialstructurewasimpossibleinearlystudiesbecauseofthe
lackofsuitableequipmentandappropriatetechniques.Evennowmechanical
testsareasourceofindirectinformationaboutphysicalprocessesthattake
placeintheatomiccrystallatticeofmetalsandalloys.However,ifwewant
to understand the nature of these processes and to be able to use them in
practiceweshouldtrytoinvestigatethemdirectly.
Thephenomenaofhigh-temperaturestrainandcreephavebeenstudied
for many years. Numerous theories have been developed, based on the de-
pendences of the strain rate upon stress and temperature. The structure of
tested metals was also studied. The obtained results are of great value and
havebeendescribedinbooksandreviewsandimportantdataarealsoscat-
teredinnumerousarticles.Previousinvestigationsimprovedourknowledge
HighTemperatureStrainofMetalsandAlloys,ValimLevitin(Author)
Copyright(cid:1)c 2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim
ISBN:3-527-313389-9
2 Introduction
oftheproblemandstimulatedfurtherexperimentalapproaches.Itisessen-
tial,however,toemphasizethatthephysicalnatureofthehigh-temperature
straininmetals,especiallyindustrialsuperalloys,isnotyetunderstoodsuffi-
ciently.Bythiswemeanthephysicalbackgroundofthedeformationonthe
atomicmicroscopicscale.
Theproblemofthehigh-temperaturepropertiesofmetallicmaterialshas
a number of experimental, theoretical and applied aspects. Naturally, it is
necessarytoidentifythescopeoftheproblemconsideredinthisbook.
Myideaisasfollows.Thehigh-temperaturediffusionmobilityofatomsand
theeffectofappliedforcesaretheconditionsunderwhichspecialprocesses
occur in the crystal lattice of metallic materials. Thus, external conditions
resultinadistinctivestructuralresponseofthematerial.Intheirturnthese
specificstructuralchangesleadtoadefinitemacroscopicbehaviorofthemate-
rial,especially,toadefinitestrainrateandtoastressresistance.Consequently,
structureevolutionistheprimarystageofresponse;mechanicalbehavioris
thesecondaryresult.Theresponseinthecrystallatticeisacause,whilethe
plasticstrainofametaloranalloyisaconsequence.Thestructuralevolution
isthereforeakeyfactor,whichdeterminesthemechanicalpropertiesofthe
metallicmaterialsathightemperatures.
Thisbooktreatsdatafromexperimentalmeasurementsofimportantstruc-
tural and kinetic characteristics which are related to physical fundamentals
ofthehigh-temperaturestrainofmetallicmaterials.Anumberofspecificpa-
rametersofsubstructure,whichhavebeendirectlymeasured,arepresented.
Theories that have been worked out on the basis of these experiments are
quantitative and contain values which have a definite physical meaning. A
methodofcalculationofthesteady-statestrainratefromthematerial,struc-
turalandexternalparametersisdevelopedforthefirsttime.
Thebookconsistsofeightchapters.
Asummaryoftheproblemispresentedinthefirstchapter.Thepeculiar-
ities of the strain of metallic materials at high temperatures are described.
The reader’s attention is drawn to the shortcomings of existing views and
theauthor’sapproachtotheproblemissubstantiated.Itisadvisableforthe
readertoremindhimselfofthemainprinciplesofdislocationtheorybyfirst
readingSupplement1.
The second chapter is devoted to experimental techniques. The unique
equipmentdevelopedbytheauthorisintendedfortheinsituX-rayinvesti-
gationofvariousmetals,i.e.fordirectstructuralmeasurementsduringthe
high-temperaturetests.Themethodoftransmissiondiffractionmicroscopy
isbrieflyconsidered.Thestudiedmetalsandalloysaredescribed.
Dataonmeasurementsofstructuralparametersarepresentedinthenext
chapter. Dependences on time of the size and misorientations of the sub-
grains are obtained for various metals. Attention is given to the dislocation
Introduction 3
structureofsub-boundariesthatareformedduringstrain.Theexperimental
dataconcerningdislocationswithinsubgrainsarepresentedanddiscussedin
moredetail.Thetotalitiesofthestructuralpeculiaritiesofthemetals,which
havebeendeformedathigh-temperatures,areformulated.
In the fourth chapter the physical mechanisms of the high-temperature
deformationofpuremetalsandsolidsolutionsareworkedoutonthebasisof
theobtaineddata.Thequantitativemodelofcreepisconsideredandvalidated.
Equations are presented for the dislocation velocity and for the dislocation
density.Thephysicallybasedforecastoftheminimumstrainrateisgiven.
The subject of the fifth chapter is a computer simulation of the high-
temperaturedeformationprocesses.Asystemofordinarydifferentialequa-
tionsmodelsthephenomenonunderstudy.Evolutionofstructuralparame-
tersandtheeffectofexternalconditionsontheparametersareanalyzed.
High-temperaturedeformationofthecreep-resistantsuperalloysisthesub-
jectofthesixthchapter.Structurechangesinmodernmaterialsandtheinter-
actionbetweendeformingdislocationsandparticlesofthehardeningphase
areanalyzed.Aphysicalmechanismofdeformationandastrainrateequa-
tion are considered. Data are presented on the connection between mean-
squareamplitudesofatomicvibrationsinthehardeningphaseandthecreep
strength.
Theseventhchapterisdevotedtothesingle-crystalsuperalloys.Theeffect
of orientation, temperature and stress on the properties of single crystals
isconsidered.Thephysicalmechanismsofthedislocationdeformationare
described.Attentionisgiventothephenomenonofraftingandtotheroleof
misfitbetweenthecrystallatticeparametersofthematrixandofthehardening
phase.
Thesubjectofthelastchapteristhepeculiaritiesofthestrainbehaviorof
refractorymetals.
Adetailedreviewofallaspectsoftheproblemunderconsiderationforpure
metalsgoesbeyondthescopeofthisbook.Thereforeknownprinciplesand
establishedfactsarementionedonlybriefly.
The reader can find reviews concerning the creep of metals in different
booksandarticles,forexample[1–8].
Description:Creep and fatigue are the most prevalent causes of rupture in superalloys, which are important materials for industrial usage, e.g. in engines and turbine blades in aerospace or in energy producing industries. As temperature increases, atom mobility becomes appreciable, affecting a number of metal a