Table Of ContentFas
Shigekazu Nagata*
Osaka University Medical School, 2-2 Yamada-oka, Suita, Osaka, 565-0871, Japan
*correspondingauthortel:81-6-6879-3310,fax:81-6-6879-3319,e-mail:[email protected]
DOI: 10.1006/rwcy.2000.16004.
SUMMARY cross-hybridization with human cDNA (Watanabe-
Fukunaga et al., 1992b).
Fas is a type I membrane protein belonging to the
TNF/NGF receptor family, and is expressed in vari- Alternative names
oustissuesandcelllines.BindingofFasLoragonistic
anti-Fas antibody to Fas causes apoptosis in Fas- CD95, Apo1.
bearingcells.Thatis,theFasengagementrecruitspro-
caspase8throughanadaptermoleculecalledFADD.
Structure
Oligomerization of pro-caspase 8 induces processing
of pro-caspase 8 to active forms. The caspase 8 then
activates other caspases in the downstream of the Human Fas is a type I membrane protein with
caspase cascade. These caspases then cleave various apparentmolecular mass of 48kDa(Itoh et al., 1991;
cellular substrates to cause morphological changes of Oehm et al., 1992).
the cells, and to degrade chromosomal DNA. The
Fas-mediated apoptosis is involved to kill the acti- Main activities and
vated T cells and B cells, thus downregulating the
pathophysiological roles
immune reaction. The loss-of-function mutations in
Fas in human and mouse cause lymphoproliferation,
and accelerate autoimmune diseases. Fas transduces an apoptotic signal into cells upon
engagement by Fas ligand (FasL) or agonistic anti-
Fas antibody (Itoh et al., 1991; Oehm et al., 1992;
Nagata and Golstein, 1995; Nagata, 1997).
BACKGROUND
Discovery
GENE
Fas was discovered as a cell surface antigen that can Accession numbers
be recognized by a cytotoxic monoclonal antibody
(anti-Fas or anti-Apo1 antibody) against human cell-
Human Fas: M67454 (Itoh et al., 1991).
surface protein (Trauth et al., 1989; Yonehara et al.,
Mouse Fas: M83649 (Watanabe-Fukunaga et al.,
1989). The human Fas cDNA was identified from
1992b).
human leukemia cell line by expression cloning using
the anti-Fas antibody (Itoh et al., 1991), or by using
Sequence
the amino acid sequence information of the purified
protein(Oehmetal.,1992).ThemouseFascDNAwas
subsequently isolated from mouse cDNA library by See Figure 1.
1650 Shigekazu Nagata
Figure 1 Nucleotide sequence for human Fas.
1 CACGCTTCTG GGGAGTGAGG GAAGCGGTTT ACGAGTGACT TGGCTGGAGC CTCAGGGGCG
61 GGCACTGGCA CGGAACACAC CCTGAGGCCA CCCCTTGCTG CCCAGGCGGA GCTGCCTCTT
121 CTCCCGCGGG TTGGTGGACC CGCTCACTAC GGAGTTCGGG AAGCTCTTTC ACTTCCCACC
181 ATTGCTCAAC AACCATGCTG GGCATCTGGA CCCTCCTACC TCTGGTTCTT ACGTCTGTTG
241 CTAGATTATC GTCCAAAAGT GTTAATGCCC AAGTGACTGA CATCAACTCC AAGGGATTGG
301 AATTGAGGAA GACTGTTACT ACAGTTGAGA CTCAGAACTT GGAAGGCCTG CATCATGATG
361 GCCAATTCTG CCATAAGCCC TGTCCTCCAG GTGAAAGGAA ACCTAGGGAC TGCACAGTCA
421 ATGGGGATGA ACCAGACTGC GTGCCCTGCC AAGAAGGGAA GGAGTACACA GACAAAGCCC
481 ATTTTTCTTC CAAATGCAGA AGATGTAGAT TGTGTGATGA AGGACATGGC TTAGAAGTGG
541 AAATAAACTG CACCCGGACC CAGAATACCA AGTGCAGATG TAAACCAAAC TTTTTTTGTA
601 ACTCTACTGT ATGTGAACAC TGTGACCCTT GCACCAAATG TGAACATGGA ATCATCAAGG
661 AATGCACACT CACCAGCAAC ACCAAGTGCA AAGAGGAAGG ATCCAGATCT AACTTGGGGT
721 GGCTTTGTCT TCTTCTTTTG CCAATTCCAC TAATTGTTTG GGTGAAGAGA AAGGAAGTAC
781 AGAAAACATG CAGAAAGCAC AGAAAGGAAA ACCAAGGTTC TCATGAATCT CCAACCTTAA
841 ATCCTGAAAC AGTGGCAATA AATTTATCTG ATGTTGACTT GAGTAAATAT ATCACCACTA
901 TTCCTGGAGT CATGACACTA AGTCAAGTTA AAGGCTTTGT TCGAAAGAAT GGTGTCAATG
961 AAGCCAAAAT AGATGAGATC AAGAATGACA ATGTCCAAGA CACAGCAGAA CAGAAAGTTC
1021 AACTGCTTCG TAATTGGCAT CAACTTCATG GAAAGAAAGA AGCGTATGAC ACATTGATTA
1081 AAGATCTCAA AAAAGCCAAT CTTTGTACTC TTGCAGAGAA AATTCAGACT ATCATCCTCA
1141 AGGACATTAC TAGTGACTCA GAAAATTCAA ACTTCAGAAA TGAAATCCAA AGCTTGGTCT
1201 AGAGTGAAAA ACAACAAATT CAGTTCTGAG TATATGCAAT TAGTGTTTGA AAAGATTCTT
1261 AATAGCTGGC TGTAAATACT GCTTGGTTTT TTACTGGGTA CATTTTATCA TTTATTAGCG
1321 CTGAAGAGCC AACATATTTG TAGATTTTTA ATATCTCATG ATTCTGCCTC CAAGGATGTT
1381 TAAAATCTAG TTGGGAAAAC AAACTTCATC AAGAGTAAAT GCAGTGGCAT GCTAAGTACC
1441 CAAATAGGAG TGTATGCAGA GGATGAAAGA TTAAGATTAT GCTCTGGCAT CTAACATATG
1501 ATTCTGTAGT ATGAATGTAA TCAGTGTATG TTAGTACAAA TGTCTATCCA CAGGCTAACC
1561 CCACTCTATG AATCAATAGA AGAAGCTATG ACCTTTTGCT GAAATATCAG TTACTGAACA
1621 GGCAGGCCAC TTTGCCTCTA AATTACCTCT GATAATTCTA GAGATTTTAC CATATTTCTA
1681 AACTTTGTTT ATAACTCTGA GAAGATCATA TTTATGTAAA GTATATGTAT TTGAGTGCAG
1741 AATTTAAATA AGGCTCTACC TCAAAGACCT TTGCACAGTT TATTGGTGTC ATATTATACA
1801 ATATTTCAAT TGTGAATTCA CATAGAAAAC ATTAAATTAT AATGTTTGAC TATTATATAT
1861 GTGTATGCAT TTTACTGGCT CAAAACTACC TACTTCTTTC TCAGGCATCA AAAGCATTTT
1921 GAGCAGGAGA GTATTACTAG AGCTTTGCCA CCTCTCCATT TTTGCCTTGG TGCTCATCTT
1981 AATGGCCTAA TGCACCCCCA AACATGGAAA TATCACCAAA AAATACTTAA TAGTCCACCA
2041 AAAGGCAAGA CTGCCCTTAG AAATTCTAGC CTGGTTTGGA GATACTAACT GCTCTCAGAG
2101 AAAGTAGCTT TGTGACATGT CATGAACCCA TGTTTGCAAT CAAAGATGAT AAAATAGATT
2161 CTTATTTTTC CCCCACCCCC GAAAATGTTC AATAATGTCC CATGTAAAAC CTGCTACAAA
2221 TGGCAGCTTA TACATAGCAA TGGTAAAATC ATCATCTGGA TTTAGGAATT GCTCTTGTCA
2261 TACCCTCAAG TTTCTAAGAT TTAAGATTCT CCTTACTACT ATCCTACGTT TAAATATCTT
2341 TGAAAGTTTG TATTAAATGT GAATTTTAAG AAATAATATT TATATTTCTG TAAATGTAAA
2401 CTGTGAAGAT AGTTATAAAC TGAAGCAGAT ACCTGGAACC ACCTAAAGAA CTTCCATTTA
2461 TGGAGGATTT TTTTGCCCCT TGTGTTTGGA ATTATAAAAT ATAGGTAAAA GTACGTAATT
2521 AAATAATGTT TTTG
Chromosome location and linkages (Itoh et al., 1991; Oehm et al., 1992). A single trans-
membrane domain of 17 amino acids divides the
molecule into the extracellular region of 157 amino
Human chromosome 10q24.1 (Inazawa et al., 1992)
acids,andthecytoplasmicregionof145aminoacids.
Mouse chromosome 11 (Watanabe-Fukunaga et al.,
The extracellular region can be further divided into
1992b) linked to lpr mutation.
three cysteine-rich subregions.
Relevant homologies and species
PROTEIN
differences
Accession numbers
The extracellular region of Fas has a homology (25–
HumanFas:PIDg105364,g182410(Itohetal.,1991) 30% homology) with that of other TNF/NGF
Mouse Fas: PID g346698, g193226 (Watanabe- receptor family members (Itoh et al., 1991; Oehm
Fukunaga et al., 1992b). et al., 1992; Smith et al., 1994). The cytoplasmic
region of Fas contains a domain of about 80 amino
acids that shows a homology with the corresponding
Description of protein
region of the TNF type I receptor (Itoh and Nagata,
1993; Tartaglia et al., 1993) and the death receptors
Human Fas is comprised of 319 amino acids with a DR3 and DR4 (Ashkenazi and Dixit, 1998). The
signal sequence of 15 amino acids at the N-terminus domain is called the ‘death domain’. The amino acid
Fas 1651
sequence of mouse Fas hasan identity of 49.3% with SIGNAL TRANSDUCTION
human Fas (Watanabe-Fukunaga et al., 1992b).
There is no species-specificity among human,
Associated or intrinsic kinases
mouse, and rat (Takahashi et al., 1994).
The cytoplasmic region of Fas and its signaling
molecule, FADD, is constitutively phosphorylated
Affinity for ligand(s)
(Kennedy and Budd, 1998). Several kinases including
RIP (receptor-interacting protein) and p59fyn were
Fas ligand binds to Fas with a K of about 1.0nM. reportedtointeractwiththecytoplasmicregionofthe
d
Fas receptor (Stanger et al., 1995; Atkinson et al.,
1996). However, the cells deficient in RIP kinase are
Cell types and tissues expressing potent to transduce the apoptotic signal, suggesting
that RIP is not essential for the Fas-mediated
the receptor
apoptotic signal transduction (Ting et al., 1996).
Fas is ubiquitously expressed in various tissues and
cells (Watanabe-Fukunaga et al., 1992b; Leitha¨user Cytoplasmic signaling cascades
et al., 1993). In particular, Fas is expressed in the
thymus, activated T cells, hepatocytes, and heart.
Acascadeofcaspases(cysteineproteases)isactivated
LymphomasofT cell and B cell originexpress ahigh
by Fas engagement (Enari et al., 1996; Nagata, 1997;
level of Fas, constitutively (Falk et al., 1992; Debatin
Tewari and Dixit, 1995) (Figure 2). Binding of Fas
et al., 1994).
ligand or agonisticanti-Fas antibodytoFasactivates
Fas.Fasligandisatrimer,andtheagonisticanti-Fas
antibodies are IgM (immunoglobulin pentamer), or
Regulation of receptor expression IgG3thattendstoaggregate.TheF(ab0) fragmentof
2
anti-Apo1 antibody or other isotypes does not
Expression of Fas in mature T cells is upregulated by activate Fas (Dhein et al., 1992), suggesting that Fas
activation with phorbol myristate acetate and must be trimerized or aggregated to the higher order
ionomycin. A cis-regulatory element of NF(cid:20)B at to transduce the signal (Takahashi et al., 1996). Tri-
positions (cid:255)295 to (cid:255)286 in the 50 flanking region of merization of Fas by FasL or agonistic anti-Fas or
human Fas chromosomal gene is responsible for the Apo1antibodycausesrecruitmentofcaspase8toFas
induced expression of Fas in T cells (Chan et al., throughanadaptercalledFADD(Boldinetal.,1995,
1999). Oncogene p53 upregulates the expression 1996; Chinnaiyan et al., 1995; Muzio et al., 1996).
of Fas (Owen-Schaub et al., 1995). p53-responsive This activatescaspase8,which thensequentiallyacti-
elements in the intron 1 and 50 promoter flanking vatesothercaspasessuchascaspases3,6,and7inthe
region of human Fas gene seem to be responsible for downstream of the caspase cascade (Hirata et al.,
the p53-dependent expression of Fas (Muller et al., 1998;Kawaharaetal.,1998).Caspasesthusactivated
1999). would cleave various cellular substrates to progress
the apoptotic program (Martin and Green, 1995;
Nagata, 1997). One of the caspase substrates is
ICAD (inhibitor of caspase-activated DNase)/DFF-
Release of soluble receptors
45 (DNA fragmentation factor 45) (Liu et al., 1997;
Sakahira et al., 1998). The cleavage of ICAD by
The soluble Fas can be produced by alternative caspase 3 leads to the activation of a DNase (CAD),
splicing (Cascino et al., 1995; Hughes and Crispe, which causes the DNA fragmentation seen in most
1995; Papoff et al., 1996). Patients with nonhemato- apoptotic cells (Enari et al., 1998). This signal
poietic malignancies or ATL (adult T cell leukemia) transduction cascade was confirmed by knocking-
have a high level of soluble Fas in the serum out the respective signaling molecules. That is, the
(Sugawara et al., 1997). There is a soluble decoy cells lacking FADD or caspase 8 do not undergo
receptor(DcR3)towhichFasLbindswithanaffinity apoptosis induced by Fas activation (Varfolomeev
similar to that with which it binds the authentic Fas etal.,1998;Yehetal.,1998;Zhangetal.,1998a).The
receptor (Pitti et al., 1999). The DcR3 gene is ampli- cells lacking caspase 3 or ICAD do not show DNA
fied in about half of human lung cancer and colon fragmentation induced by Fas activation (Woo et al.,
cancer cells. 1998; Zhang et al., 1998b).
1652 Shigekazu Nagata
Figure2 Fas-inducedapoptosis.BindingofFasligand DOWNSTREAM GENE
to Fas induces trimerization of Fas, which recruits pro-
ACTIVATION
caspases 8 via an adapter called FADD/MORT1, and
induces its processing to the mature form. In one
signalingpathway,caspase8directlyactivatescaspase3 Transcription factors activated
downstreamofthecaspasecascade.Inanotherpathway,
caspase8cleavesBid,aproapoptoticmemberoftheBcl-
Transcription factors are not activated by Fas
2 family. The cleaved Bid then enters mitochondria to
engagement, although NF(cid:20)B was reported to be
causereleaseofcytochromeC,whichactivatescaspase9
together with Apaf-1. The caspase 9 then activates activated in some cell lines (Rensing et al., 1995).
caspase 3. Caspase 3, thus activated, cleaves various
cellular substrates to induce morphological changes of
cells and nuclei. One of the caspase 3 substrates is Genes induced
ICAD/DFF-45, which is complexed with CAD, a spe-
cific DNase. Cleavage of ICAD by caspase 3 releases
The Fas activation quickly leads to cleavage of
CADfromICAD,andCADthenentersnucleitocause
chromosomal DNA (Itoh et al., 1991), and does not
DNA fragmentation.
induce gene expression.
BIOLOGICAL CONSEQUENCES
OF ACTIVATING OR INHIBITING
RECEPTOR AND
PATHOPHYSIOLOGY
Unique biological effects of
activating the receptors
Activation of Fas causes apoptotic cell death in most
cases (Nagata, 1997). It may also cause necrotic cell
death in certain conditions (Vercammen et al., 1998).
Phenotypes of receptor knockouts
and receptor overexpression mice
Mouse mutation lpr (lymphoproliferation) is a loss-
of-function mutation of Fas (Watanabe-Fukunaga
et al., 1992a) (Figure 3). In one allele (lpr), an early
transposable element (ETn) is inserted in intron 2 of
Many other signaling cascades initiated by the the Fas chromosomal gene (Adachi et al., 1993). The
activated Fas leading to apoptosis have been pro- Fas transcript prematurely terminates in intron 2.
posed. For example, ceramide was postulated to However,theinhibitionofexpressionisnotcomplete,
mediate the Fas signal by activating the Ras/MAP as demonstrated by the presence of full-length Fas
kinase pathway (Cifone et al., 1994; Gulbin et al., mRNA, albeit at a low level, suggesting that lpr is a
1995; Tepper et al., 1995). However, recent analysis leaky mutation. In the other allele (lprcg), a point
suggests that ceramide is not activated during Fas- mutation that causes replacement of an amino acid
mediated apoptosis, and ceramide is probably not from isoleucine to asparagine is introduced in the
involved in this signaling pathway (Hofmann and death domain of the Fas cytoplasmic region, which
Dixit, 1998; Hsu et al., 1998; Watts et al., 1997). abolishestheabilityofFastotransducetheapoptotic
Other pathwaysproposed involvingDAXX, JNK, or signal (Watanabe-Fukunaga et al., 1992a). Mice
Bid (Brenner et al., 1997; Yang et al., 1997; Li et al., carrying the lpr mutation develop lymphadenopathy
1998; Luo et al., 1998) also need to be confirmed. andsplenomegaly,produceautoantibodies,andsuffer
Fas 1653
Figure 3 Mutations of Fas in lpr-mice and in human patients with Canale–Smith syndrome. (a) A
mutationintheFasgeneinlprmice.ThestructureofmouseFaschromosomalgeneisschematically
shown. In lpr mice an early transposable element (ETn) carrying poly(A) addition signal on a long
terminal repeat (LTR) is inserted in intron 2 of the gene. This causes premature termination of Fas
transcript.(b)PointmutationsintheFasdeathdomaininhumanCanale–Smithsyndromeandlprcg
mice. The amino acid sequences of the death domain of human and mouse Fas are aligned. The
aminoacidreplacementsinpatientsofCanale–Smithsyndromeareindicatedontheupperline,while
the mutation in lprcg mice is shown in the lower line.
wild
lpr
References
from autoimmune diseases such as nephritis and
arthritis (Cohen and Eisenberg, 1991). Fas knockout
mice were also established, and the mice shows more Adachi, M., Watanabe-Fukunaga, R., and Nagata, S. (1993).
accelerated and pronounced lymphadenopathy and Aberranttranscriptioncausedbytheinsertionofanearlytrans-
splenomegaly than lpr mice (Adachi et al., 1995). posableelementinanintronoftheFasantigengeneoflprmice.
Proc.NatlAcad.Sci.USA90,1756–1760.
Adachi,M.,Suematsu,S.,Kondo,T.,Ogasawara,J.,Tanaka,T.,
Yoshida, N., and Nagata, S. (1995). Targeted mutation in the
Human abnormalities
Fasgenecauseshyperplasiaintheperipherallymphoidorgans
andliver.NatureGenet.11,294–300.
Human patients with Canale–Smith syndrome Ashkenazi,A.,andDixit,V.M.(1998).Deathreceptors:signaling
andmodulation.Science281,1305–1308.
or autoimmune lymphoproliferative syndrome show
Atkinson,E.,Ostergaard,H.,Kane,K.,Pinkoski,M.,Caputo,A.,
phenotypes (lymphadenopathy, splenomegaly, and
Olszowy, M., and Bleackley, R. (1996). A physical interaction
autoimmune diseases) similar to those in lpr mice, between the cell death protein Fas and the tyrosine kinase
and carry loss-of-function mutations in the Fas gene p59fynT.J.Biol.Chem.271,5968–5971.
(Fisheretal.,1995;Rieux-Laucatetal.,1995;Nagata, Boldin, M. P., Varfolomeev, E. E., Pancer, Z., Mett, I. L.,
Camonis, J. H., and Wallach, D. (1995). A novel protein that
1998). Mutations in the Fas death domain in this
interacts with the death domain of Fas/APO1 contains a
syndrome are shown in Figure 3b. sequence motif related to the death domain. J. Biol. Chem.
270,7795–7798.
Boldin,M.P.,Goncharov,T.M.,Goltsev,Y.V.,andWallach,D.
THERAPEUTIC UTILITY (1996).InvolvementofMACH,anovelMORT1/FADD-inter-
actingprotease,inFas/APO-1-andTNFreceptor-inducedcell
death.Cell85,803–815.
Effect of treatment with soluble
Brenner, B., Koppenhoefer, U., Weinstock, C., Linderkamp, O.,
Lang, F., and Gulbins, E. (1997). Fas- or ceramide-induced
receptor domain
apoptosis is mediated by a Rac1-regulated activation of Jun
N-terminal kinase/p38 kinases and GADD153. J. Biol. Chem.
AdministrationofsolubleFas(theextracellularregion 272,22173–22181.
Cascino,I.,Fiucci,G.,Papoff,G.,andRuberti,G.(1995).Three
of Fas fused to the Fc region of human immunoglo-
functionalsoluble forms of the human apoptosis-inducing Fas
bulin) blocks development of CTL-induced hepatitis
moleculeareproducedbyalternativesplicing.J.Immunol.154,
in a mouse model system (Kondo et al., 1997). 2706–2713.
1654 Shigekazu Nagata
Chan, H., Bartos, D. P., and Owen-Schaub, L. B. (1999). Itoh,N.,andNagata,S.(1993).Anovelproteindomainrequired
Activation-dependent transcriptional regulation of the human for apoptosis: mutational analysis of human Fas antigen.
fas promoter requires NF-kappaB p50–p65 recruitment. Mol. J.Biol.Chem.268,10932–10937.
Cell.Biol.19,2098–2108. Itoh, N., Yonehara, S., Ishii, A., Yonehara, M., Mizushima, S.,
Chinnaiyan,A.M.,O’Rourke,K.,Tewari,M.,andDixit,V.M. Sameshima,M.,Hase,A.,Seto,Y.,andNagata,S.(1991).The
(1995). FADD, a novel death domain-containing protein, polypeptideencodedbythecDNAforhumancellsurfaceanti-
interactswiththedeathdomainofFasandinitiatesapoptosis. genFascanmediateapoptosis.Cell66,233–243.
Cell81,505–512. Kawahara, A., Enari, M., Talanian, R. V., Wong, W. W., and
Cifone, M. G., De, M. R., Roncaioli, P., Rippo, M. R., Nagata, S. (1998). Fas-induced DNA fragmentation and pro-
Azuma, M., Lanier, L. L., Santoni, A., and Testi, R. (1994). teolysisofnuclearproteins.GenesCells3,297–306.
Apoptotic signaling through CD95 (Fas/Apo-1) activates an Kennedy, N. J., and Budd, R. C. (1998). Phosphorylation of
acidicsphingomyelinase.J.Exp.Med.180,1547–1552. FADD/MORT1 and Fas by kinases that associate with the
Cohen,P.L.,andEisenberg,R.A.(1991).Lprandgld:singlegene membrane-proximal cytoplasmic domain of Fas. J. Immunol.
modelsofsystemicautoimmunityandlymphoproliferativedis- 160,4881–4888.
ease.Annu.Rev.Immunol.9,243–269. Kondo,T.,Suda,T.,Fukuyama,H.,Adachi,M.,andNagata,S.
Debatin, K.-M., Fahrig-Faissner, A., Enenkel-Stoodt, S., (1997).Essential rolesof theFas ligand in thedevelopment of
Kreuz, W., Benner, A., and Krammer, P. H. (1994). High ex- hepatitis.NatureMed.3,409–413.
pression of APO-1 (CD95) on T lymphocytes from human Leitha¨user, F., Dhein, J., Mechtersheimer, G., Koretz, K.,
immunodeficiency virus-1-infected children. Blood 83, 3101– Bru¨derlein, S., Henne, C., Schmidt, A., Debatin, K.-M.,
3103. Krammer, P. H., and Mo¨ller, P. (1993). Constitutive and
Dhein,J.,Daniel,P.T.,Trauth,B.C.,Oehm,A.,Mo¨ller,P.,and induced expression of APO-1, a new member of the nerve
Krammer,P.H.(1992).Inductionofapoptosisbymonoclonal growth factor/tumor necrosis factor receptor superfamily, in
antibody anti-APO-1 class switch variants is dependent on normalandneoplasticcells.Lab.Invest.69,415–429.
cross-linking of APO-1 cell surface antigens. J. Immunol. 149, Li,H.,Zhu,H.,Xu,C.J.,andYuan,J.(1998).CleavageofBID
3166–3173. by caspase 8 mediates the mitochondrial damage in the Fas
Enari,M.,Talanian,R.V.,Wong,W.W.,andNagata,S.(1996). pathwayofapoptosis.Cell94,491–501.
SequentialactivationofICE-likeandCPP32-likeproteasesdur- Liu, X., Zou, H., Slaughter, C., and Wang, X. (1997). DFF, a
ingFas-mediatedapoptosis.Nature380,723–726. heterodimeric protein that functions downstream of caspase-3
Enari, M., Sakahira, H., Yokoyama, H., Okawa, K., totrigger DNA fragmentation during apoptosis. Cell 89, 175–
Iwamatsu, A., and Nagata, S. (1998). A caspase-activated 184.
DNase that degrades DNA during apoptosis and its inhibitor Luo, X., Budihardjo, I., Zou, H., Slaughter, C., and Wang, X.
ICAD.Nature391,43–50. (1998). Bid, a Bcl2 interacting protein, mediates cytochrome c
Falk, M. H., Trauth, B. C., Debatin, K.-M., Klas, C., releasefrommitochondriainresponsetoactivationofcellsur-
Gregory,C.D.,Rickinson,A.B.,Calender,A.,Lenoir,G.M., facedeathreceptors.Cell94,481–490.
Ellwart,J.W.,Krammer,P.H.,andBornkamm,G.W.(1992). Martin,S.,andGreen,D.(1995).Proteaseactivationduringapop-
ExpressionoftheAPO-1antigeninBurkittlymphomacelllines tosis:deathbyathousandcuts.Cell82,349–352.
correlates with a shift towards a lymphoblastoid phenotype. Muller, M., Wilder, S., Bannasch, D., Israeli, D., Lehlbach, K.,
Blood79,3300–3306. Li-Weber, M., Friedman, S. L., Galle, P. R., Stremmel, W.,
Fisher, G. H., Rosenberg, F. J., Straus, S. E., Dale, J. K., Oren, M., and Krammer, P. H. (1999). p53 activates the
Middelton, L. A., Lin, A. Y., Strober, W., Lenardo, M. J., CD95(APO-1/Fas)geneinresponsetoDNAdamagebyanti-
and Puck, J. M. (1995). Dominant interfering Fas gene muta- cancerdrugs.J.Exp.Med.188,2033–2045.
tions impair apoptosis in a human autoimmune lymphoprolif- Muzio, M., Chinnaiyan, A. M., Kischkel, F. C., O’Rourke, K.,
erativesyndrome.Cell81,935–946. Shevchenko, A., Ni, J., Scaffidi, C., Bretz, J. D., Zhang, M.,
Gulbin, E., Bissonnette, R., Mahboubi, A., Martin, S., Gentz, R., Mann, M., Krammer, P. H., Peter, M. E., and
Nishioka, W., Brunner, T., Baier, G., Baier-Bitterkich, G., Dixit, V. M. (1996). FLICE, a novel FADD-homologous
Byrd, C., Lang, F.,Kolesnick, R., Altman, A., and Green, D. ICE/CED-3-like protease,isrecruitedtotheCD95(Fas/APO-
(1995). Fas-induced apoptosis is mediated via a ceramide- 1)death-inducingsignalingcomplex.Cell85,817–827.
initiatedrassignalingpathway.Immunity2,341–351. Nagata,S.(1997).Apoptosisbydeathfactor.Cell88,355–365.
Hirata,H.,Takahashi,A.,Kobayashi,S.,Yonehara,S.,Sawai,H., Nagata, S. (1998). Human autoimmune lymphoproliferative syn-
Okazaki,T.,Yamamoto,K.,andSasada,M.(1998).Caspases drome,adefectintheapoptosis-inducingFasreceptor:Alesson
are activated in a branched protease cascade and control dis- fromthemousemodel.J.Hum.Genet.43,2–8.
tinct downstream processes in Fas-induced apoptosis. J. Exp. Nagata,S.,andGolstein,P.(1995).TheFasdeathfactor.Science
Med.187,587–600. 267,1449–1456.
Hofmann, K., and Dixit, V. M. (1998). Ceramide in apoptosis- Oehm, A., Behrmann, I., Falk, W., Pawlita, M., Maier, G.,
doesitreallymatter?TrendsBiochem.Sci.23,374–377. Klas,C.,Li-Weber,M.,Richards,S.,Dhein,J.,Trauth,B.C.,
Hsu,S.-C.,Wu,C.-C.,Luh,T.-Y.,Chou,C.-K.,Han,S.-H.,and Ponstingl, H., and Krammer, P. H. (1992). Purification and
Lai, M.-Z. (1998). Apoptosis signal of Fas is not mediated by molecularcloningoftheAPO-1cellsurfaceantigen,amember
ceramide.Blood91,2658–2663. ofthetumornecrosisfactor/nervegrowthfactorreceptorsuper-
Hughes, D. P., and Crispe, I. N. (1995). A naturally occurring family: sequence identity with the Fas antigen. J. Biol. Chem.
solubleisoformofmurineFasgeneratedbyalternativesplicing. 267,10709–10715.
J.Exp.Med.182,1395–1401. Ogasawara, J., Watanabe-Fukunaga, R., Adachi, M.,
Inazawa,J.,Itoh,N.,Abe,T.,andNagata,S.(1992).Assignment Matsuzawa,A.,Kasugai,T.,Kitamura,Y.,Itoh,N.,Suda,T.,
ofthehumanFasantigengene(FAS)to10q24.1.Genomics14, andNagata,S.(1993).Lethaleffectoftheanti-Fasantibodyin
821–822. mice.Nature364,806–809.
Fas 1655
Owen-Schaub, L. B., Zhang, W., Cusack, J. C., Angelo, L. S., Rebrikov, D., Brodianski, V. M., Kemper, O. C., Kollet, O.,
Santee, S. M., Fujiwara, T., Roth, J. A., Deisseroth, A. B., Lapidot, T., Soffer, D., Sobe, T., Avraham, K. B.,
Zhang, W. W., and Kruzel, E. (1995). Wild-type human p53 Goncharov, T., Holtmann, H., Lonai, P., and Wallach, D.
and a temperature-sensitive mutant induce Fas/APO-1 expres- (1998).Targetdisruptionofthemousecaspase8geneabalates
sion.Mol.Cell.Biol.15,3032–3040. celldeathinductionbytheTNFreceptors,Fas/Apo1,andDR3
Papoff,G.,Cascino,I.,Eramo,A.,Starace,G.,Lynch,D.H.,and andislethalprenatally.Immunity9,267–276.
Ruberti, G. (1996). An N-terminal domain shared by Fas/ Vercammen,D.,Brouckaert,G.,Denecker,G.,VandeCraen,M.,
Apo-1 (CD95) soluble variants prevents cell death in vitro. Declercq, W., Fiers, W., and Vandenabeele, P. (1998). Dual
J.Immunol.156,4622–4630. signaling of the Fas receptor: initiation of both apoptotic and
Pitti, R. M., Marsters, S. A., Lawrence, D. A., Roy, M., necroticcelldeathpathways.J.Exp.Med.188,919–930.
Kishkel, F. C., Dowd, P., Huang, A., Donahue, C. J., Watanabe-Fukunaga, R., Brannan, C. I., Copeland, N. G.,
Sherwood, S. W., Baldwin, D. T., Godowski, P. J., Jenkins, N. A., and Nagata, S. (1992a). Lymphoproliferation
Wood, W. I., Gurney, A. L., Hillan, K. J., Cohen, R. L., disorderinmiceexplainedbydefectsinFasantigenthatmed-
Goddard, A. D., Botstein, D., and Ashkenazi, A. (1999). iatesapoptosis.Nature356,314–317.
Genomic amplification of a decoy receptor for Fas ligand in Watanabe-Fukunaga,R.,Brannan,C.I.,Itoh,N.,Yonehara,S.,
lungandcoloncancer.Nature396,699–703. Copeland, N.G.,Jenkins,N.A.,andNagata,S.(1992b).The
Rensing, E. A., Hess, S., Ziegler, H. H., Riethmuller, G., and cDNA structure, expression, and chromosomal assignment of
Engelmann, H. (1995). Fas/Apo-1 activates nuclear factor themouseFasantigen.J.Immunol.148,1274–1279.
kappaBandinducesinterleukin-6production. J.Inflamm.45, Watts, J. D., Gu, M., Polverino, A. J., Patterson, S. D., and
161–174. Aebersold, R. (1997). Fas-induced apoptosis of T cells occurs
Rieux-Laucat, F., Le Deist, F., Hivroz, C., Roberts, I. A. G., independently of ceramide generation. Proc. Natl Acad. Sci.
Denatin, K. M., Fischer, A., and de Villarty, J. P. (1995). USA94,7292–7296.
Mutations in Fas associated with human lymphoproliferative Woo, M., Hakem, R., Soengas, M. S., Duncan, G. S.,
syndromeandautoimmunity.Science268,1347–1349. Shahinian, A., Kagi, D., Hakem, A., McCrrach, M.,
Sakahira,H.,Enari,M.,andNagata,S.(1998).CleavageofCAD Khoo, W., Kaufman, S. A., Senaldi, G., Howard, T.,
inhibitor in CAD activation and DNA degradation during Lowe, S. W., and Mak, T. W. (1998). Essential contribution
apoptosis.Nature391,96–99. of caspase 3/CPP32 to apoptosis and its associated nuclear
Smith,C. A.,Farrah, T.,and Goodwin,R. G.(1994).TheTNF changes.GenesDev.12,806–819.
receptor superfamily of cellular and viral proteins: activation, Yang, X., Khosravi-Far, R., Chang, H. Y., and Baltimore, D.
costimulation,anddeath.Cell76,959–962. (1997). Daxx, a novel Fas-binding protein that activates JNK
Stanger,B.Z.,Leder,P.,Lee,T.-H.,Kim,E.,andSeed,B.(1995). andapoptosis.Cell89,1067–1076.
RIP:Anovelproteincontainingadeathdomainthatinteracts Yeh,W.-C., Pompa,J.L.D.L.,McCurrach,M.E.,Shu,H.-B.,
withFAS/APO-1(CD95)inyeastandcausescelldeath.Cell81, Elia, A. J., Shahinian, A., Ng, M., Wakeham, A., Khoo, W.,
513–523. Mitchell,K.,El-Deiry,W.S.,Lowe,S.W.,Goeddel,D.V.,and
Sugawara, K., Yamada, Y., Hiragata, Y., Matsuo, Y., Mak,T. W. (1998). FADD: essential for embryo development
Tsuruda, K., Tomonaga, M., Maeda, T., Atogami, S., and signaling from some, but not all, inducers of apoptosis.
Tsukasaki, K., and Kamihira, S. (1997). Soluble and mem- Science279,1954–1958.
brane isoforms of Fas/CD95 in fresh adult T-cell leukemia Yonehara, S., Ishii, A., and Yonehara, M. (1989). A cell-killing
(ATL)cellsandATL-celllines.Int.J.Cancer72,128–132. monoclonal antibody (anti-Fas) to a cell surface antigen
Takahashi, T., Tanaka, M., Inazawa, J., Abe, T., Suda, T., and co-downregulated with the receptor of tumor necrosis factor.
Nagata,S.(1994).HumanFasligand;genestructure,chromo- J.Exp.Med.169,1747–1756.
somal location and species specificity. Int. Immunol. 6, 1567– Zhang, J., Cado, D., Chen, A., Kabra, N. H., and Winoto, A.
1574. (1998a). Fas-mediated apoptosis and activation-induced T-cell
Takahashi, T., Tanaka, M., Ogasawara, J., Suda, T., proliferation are defective in mice lacking FADD/Mort1.
Murakami, H., and Nagata, S. (1996). Swapping between Fas Nature392,296–300.
andG-CSFreceptor.J.Biol.Chem.271,17555–17560. Zhang, J., Liu, X., Scherer, D. C., Kaer, L. v., Wang, X., and
Tartaglia, L. A., Ayres, T. M., Wong, G. H. W., and Xu, M. (1998b). Resistance to DNA fragmentation and chro-
Goeddel,D.V.(1993).Anoveldomainwithinthe55kdTNF matin condensation in mice lacking the DNA fragmentation
receptorsignalscelldeath.Cell74,845–853. factor45.Proc.NatlAcad.Sci.USA95,12480–12485.
Tepper, C. G., Jayadev, S., Liu, B., Bielawska, A., Wolff, R.,
Yonehara, S., Hannun, Y. A., and Seldin, M. F. (1995). Role
LICENSED PRODUCTS
for ceramide as an endogenous mediator of Fas-induced cyto-
toxicity.Proc.NatlAcad.Sci.USA92,8443–8447.
Tewari, M., and Dixit, V. M. (1995). Fas- and tumor necrosis Monoclonal antibodies (clones CH-11, UB-2, and
factor-induced apoptosis is inhibited by the poxvirus crmA ZB-4) against human Fas are available from
geneproduct.J.Biol.Chem.270,3255–3260.
Medical & Biological Laboratories (MBL), Nagoya,
Ting, A. T., Pimentel, M. F., and Seed, B. (1996). RIP mediates
Japan. The CH-11 antibody works as an agonist
tumornecrosisfactorreceptor1activationofNF-kappaBbutnot
Fas/APO-1-initiatedapoptosis.EMBOJ.15,6189–6196. (Yonehara et al., 1989), while the ZB-4 antibody
Trauth,B.C.,Klas,C.,Peters,A.M.J.,Matzuku,S.,Mo¨ller,P., works as an antagonist.
Falk, W., Debatin, K.-M., and Krammer, P. H. (1989). Monoclonal antibody against mouse Fas (clone
Monoclonal antibody-mediated tumor regression by induction
Jo2) (Ogasawara et al., 1993) is available form Phar-
ofapoptosis.Science245,301–305.
Mingen (San Diego, CA, USA). The Jo2 antibody
Varfolomeev, E. E., Schuchmann, M., Luria, V.,
Chiannikulchai, N., Beckmann, J. S., Mett, I. L., works as an agonist.