Table Of ContentTitodleol l'oorpiegrian ale
Proofasn dR cfutatiTohneLs o.g iocf M athematDiicsaclo very
(Copyrigh1t9 7b6y CambridUgnei versPirteys s)
©
Traduzdiaolnle' inglese di
DaniBeelnae lli
Ediziiotnaela ic aunrdaai
GiulGiioo rello
Primead iziitoanleai parnial:e
1979
Copyrbiyg ht
©
GiangiacFoemlot riEndeilltio re
Milano
ImrLaek atos
Dimostrazioni
confutazioni
e
Lal ogidceals lcao pemrattae matica
ac urdaiJ o hnW orraeBll l iZea har
introduazlli'oendei ziitoanleid aiGn iau lGiioo rello
FeltrEidnietlolMriie l ano
Introduzione
Lad imostr(aozm ieognlleie" o d imoiso)tnd riiua nzt eoraelmc ae n
tro udndi i alqougao"s ipl ato"n,ia clolsac opedretlavl ear iot,aà l
menoa,l lsom ascherdaemleln't:eo r qrèuo ercleh e propone Imre La
kationsq ues"tirac ostrurzaizoino"en d aelite entaitnitvria pperre si
dimosturnaacr eel ecborneg etmtautream a,ti iltc eaoredmiEa u ler.
Obietptoilveom èii cmloo dtor adizdiiio nnsaelge nfaorreds ie( e)f are
matemaltois cfao;n idnov,,e l caec apacdiirt iàm etctoenrtei nuamente
inq uestqiuoenlecl hees embrlaent oe spii ou vvileec, o noscpeinuz e
consollieda actqeu,i spiizuci eorntide e finei tiMvae s.er ,i voalltloa
matema(teip ciaui ng eneraalllseac ie)n,qz uaeldil oL akations
quesvtool uèmu en tenvtoaltatic ovo om prenqdueeprire o blqeumeii,
procediip meertn etntaetdei rvrio qruie,l le et astttriactdheieg irei
cercchaef anno pdrealtlsiacc iae nutni'fiicmap arffeassac icnoamnet e
ogniim precsrae atdiavlarl,ia c earrctai satlci ocnaf roindteoo logico,
perl os tudidoifis loo sodfieals lcai e"np zrao feisss"ti aloan" s fid"a
lakatoaslil"aepen ias temoaluotgoireie t daorgimea t"i cuèhn e'occasio
nep erri prencdreirtei ciap mreenstuep dpeolssltuaisa t edsissac iplina
e pevra lutraarzliio naallmlleuanc dteee g ilnit erede esvisa il doirb ia se
chev engounsou almaesunsnt.teC i oslIe' xcurpsruopso nsetllo i bèr o
uni nviatr oi penlsm'apirree sscai enctoimfi"ecm iap recsrai "t icea la
riflesssiuolsnlceai ecnozmame o mendtiol ibeirnttàe ll.e ttuale
Lep agicnhese e guonnoonp retenddido anroue nq uadersoa urien
ted elfillao sdoifiL aa koastM.i rainnov eacdie n quadDriamroes trazio
nie c onfutnaezclio onntied setl"olo can cezfiaolnilesi "bt diaellmlaa
temat(ipcaar ag1r,)a efaso a mignlaeirl ee mednict oin tineu iqtuàe lli
di rottrtiaulL r aak atdoiqs u esvtool uem qeu eldleol rliafl essione
epistemosluolsglcieic eaen mzpei r-icchheei lp ubbliitcaol giiaàn o
conodsacsiea gpguib bliicnCa rtiit eic crae sdceiltclaoa n oscenza
-
(apragr2a,)f oa deilnifinneuean rape o ssirbiislpeoa slpt rao blema
chei ne ntraimc boin tessirt iip resqeunetldale,opl rogrsecsiseon ti
ficaot traivlme urtsaom ecnotnoc et(tpuaaralge3r. )a fo
7
Introduzione
1.L al ogica della scIolmp eetrotdao dmidametoleslmtear taizciao.n i
ec onfutazioni
Seconudnoat radizcioonnseo l(ihcdepa etLraa katroissa allmee no
adE ucl)il dame atemaèt uincada i csipl"iuanotar itairnifaa,l liinbile,
confut"a,ub nic loerpdoi chec respceera ccumulaszuicocnees
verità
sivea c heq,u i,nc doin scopedretcla a ratftaelrlei bile
e riveddieblillee ]p"aprcs reioteg"enrs ezeemes psiirv,iar c ehse"tala s olsac ienza
chfien orpai acai utdoi 'um ani.'"D imostraezc ioonni
futazèia olnnciui Dsio larpgraielrsles cotocànhtée mporanIemarmee nte
e gg'
Lakatèo vse nuatlot arii pcrhees enitnavneuocn eq uadrraod icalmen
ted ive.rL samo astcermiavsteiisn cvdaio, l uppa fcoornmgueltaptnrudorope o,
nenddom o lzzndoc,r itiqcuanedsdoti em ostnriLa.az io
e a
cosapioostrnaiz iamnaiaturantealsli' Ott-occeunist iao g giunge
lnos teavt]oe z7.cdare iltrliiecc ae rfcohned azioovnena elsis,u n prèo gramma
attuale
riusciimtpooi r snettasmuqe unetlreli iv -alciip ermeotgtgedi i
a
riconoislcc aerraet ctoenrgee ttduergaalslise idoims ip ecitfiecohrei e
matemataincchhdeei,t eoriimep ortea fnotnid annetlil 'emdiaficio
tema;t imcao Lakatsoiss p inpgieuo lt.r edimostrsatzeisosnei
Le
hannuon c aratctoenrgee tteu fraallleia b cialueds,ea ml o dos tesso
conc upir ocleadc eo ncrientdaa gmiantee matica.
I tes"terid atitnsi t idleed uitst"ti,cav hee lencanol ept ruette
mess"een ces"sp aerdrie eduurnrt ee oreem iam,p iegdaipn uon tion
bianacsot rcuosnic ectotmiie l p restigtiiarftauo orrei ild aclo niglio
cappeslelnodz aar nleem otivazsioonpnoei rL' a katgolusil timi, piu
raffinateis idteipl e nsideorgom atciicodoèe, l l'op"iesncioonnldeao
quaille vceornos iisnut neap roposiczhieèo unner esulfitsoas".t4o
"tsildee duitst"ti,pav aradossadlàcm oernpotoge g,ai q uefla nta
1s0m ad im atemastcihcear dnaiH teog enle lPlrae ifoanzdee lFlean o
meonlo:g" i'laessendzeal dliam ostr[azeniloltnaee r minodliqo ugeia
stvoo ulme','li d(eidaf onddoe)l la dimosntornha aza inocnoierla' ]
THOMAHSO BBELeSv,i atatnroi.,t . L,aN uovIat aliFai,r enz1e9 76p,.3 4.C ome
I
slogdaenl " dogmatimsamtoe matliacf or"a sdeiH obbeès r ipresea c ommentiant a
quesvtool umpe.4 ,3 .
Z Alludiianmp oa rticao lWahraetd oeas m athemaptriocopalrl o v(es criptrtoo
babilmtenrtiael 1 95e9 i l1 961e )T hem eth0o1da nalysis-(slcuyain p trhiemspaia rst e
fus crittrtiaal 1 95e6 i l1 961m,e ntlraes econvdean nper esennteal1t 9a7 a3 unac on
friesrpeeant zJtayi vviiaismc ke(aynFpltiiiient3 ,lo alecni odd imi4aer ) elAK pAlTaiO ucSna,M a artthiecdmoiJal S.toHc i iicnestan,inc kdeEck poais)st:ti etmuioslcoognyo:,
PhilosoPpahpiercasa cu,lr ad iJ .W oIr.r ael l Curriveo,I 2.,C ambriUdngiev erPresssi,t y
G.
Cambri1d9g7e8 .
3N onè casuachlee n elc ritiicla" rmei sticaiustmoor itdaerlil"oso"t idleed ut
tivisLtaak"a tfoasc ciuan os pregiuduiscoda itH oe ge(ls iv edai np articlo'laArpe
pendi2c)e. resto "ilt rucdciou nas imislaeg gezzèa c osprie stiom paraqutanot o
Del
facilmmeenstseio n o perMaa. nona ppensac operltaso u,a r ipetidziivoenretr aàn to
insopporqtuaabniltlaoer ipetidzeiloln'ea pparrteezd ziua tnpa r estigiGa.t Wo.r Fe." .
HEGELF,e nomenodleolgslipoai rtirti.ot ,La. ,N uovIat alFiiar,e n1z9e7 0v,a lI.,p .4 2.
4 G. W. F.H EGELF,e nomenodleolgslipoai rtirti.ot ,.c ,i tv.o,II .,p .3 2.
8
Intdruozione
signiefil caan taot udriea s semroem endteorl e sulsttaet;sao sn ozi nel
resulutnta atlmoeo menètg oi pàa ssead tiol etgo"ua'.
Ques"tmoo vimeinnts ou peir"efi6èc t ipipceoLra kadteollse es po
sizisotnain dsairadon,vo v iamdeenmita en uasliia,ln eco o rresnttoir ie
delmlaat ema.t iiElcc aasdoac uDii mostreac zoinofnuitp arzeinodnei
avviloac, o ngetdtiEu uriae èr e,s emp.lS aerceonidr oe socotnrtai
dizioinnafl,ail t,ast tiodreilacl oan getVt +u Sr a F 2 (voeV ,S
- =
e F denotrainsop ettiilv naummeenrtdoee iv ertdiecgisli,p igoli e
delflaec dcieu n" polie")d rocomicnocni asg floir ttuennattaidt ii vi
Euler tepremri cnoanrl ear iusgceintear alidzizP aoziinocnMaear é.
peLra kaotcocso gruraer daalrlseta r utfinteu drita u tti" etqnuteait ivi
ede rr"oc rhiec ollelgo'airngoi ncaolneg eteutluerraia alnlvaae rsione
datadnaeP oincnaerlcé o ntedsetllo' ansailtyOusgsig.sdi i amo per
scontsaitafo a itlct hoile teoredmiEa u lseira pplaiipc oal ie"fdseri
rodi"i,ci oèo meorfim oallas fercao,nf acocmee omoalr fdei s(c,oe
sen ons is uppocnheel ef acsciea no pgilasinp ei groeel ,ti t ioccorre
ancorriac hicehdeeg rlseip igsoilaion moe omoar.lsf eig me)n,st ioial
fatcthoes ,eq uesctoen diznioonsn oin tou tstoed dissfica otstter,u i
sconfoa cilmdeencito en troeSspeemspdsiio.m enticpheirqaòum eol la
vasta gdaitm emnat a-tdiavL ie genCdaruec,Lh hyu,i lvioenSr t,a udt,
ec.cfi noa M obisu,L istJionrgd,,ea cn.c -chme iraav" ats abi"lil i re
teorema dcaonnddoindzeii v oanlii edsiptràen sosnne e lq uadtroo
pologcihceoo g gciiè familimaarc eo,nc lausaotltaee i mpedliar e·
costrudziic oonnet roe(socenmspiid serpaetsis o "cmoosmt"erd iae li
mina:r euant tegginaemriei ngtuoad redl"ilm eo stràu"oo s "ipattolo
gi"e asisd aiffunseol l'Ottcohcese irn ittor,o va snoeplrlat'tauntato
lidseil sleac omnedatd àe sle coLle'om)e.r gdeerclea ratptielipr reo
priamteonptoel o(gpiicuot tpoosntioac,mh ome,e troi pcroo ie)t- tivo
conC aylee yL isntei1ln8 g6e 1q uincdoiJn o rdnaen1l 8 6-6, l eg e
neralizzdaiSz ciholneliid BiiP oinceai rnéfin le 'insedrazp iaordntiee
quest'udletliclmoaon getdtiEu ural enre lq uadcroon cetdteullaal e
topolcoogmibai n7as toonraoil aloprearL akatcoesr dteoic ontributi
dig ranrdiel imeavn oo,n" evriutlàt "im,ien n omdee lqluea dliim enti
carqeu eclh e accadpurmtiao. D elr estaon,c hnee lmlaat ematica
nonv is onvoeè r uilttàei ;om almetnuot,lt eee p istemcohlheoa gnineo
pretdeisf oo nduarneam atemactoisctai dtiuv ietrai" tniàd iscu"t ibili
5I bidp..3 ,3 .
6 Ibidp..3 ,5 .
7P eru nar apidead ef ficacsei ntedsiqi u esm-tiis ultsaivt eid,a i nJ .D IEUDONNÉ.,
Abrédg'éh isdteomsia rteh ématHieqrumaensPn,a, r i1s9 78v,o II.I ,i lc apX.: G .H msCH,
Topoloignip ea,r ticoplpa.r2 e1 8-21U9n.a bibliogroraifiean tatsiivt ar ovian J .C .
PONTLa, topolaogligeé brdieqsou rei giàn Peosi ncPaUrFé,,P a ris 1974s to<ruinaa
dd te emad iE ule"rn ellpar ospetdteilvlata o pologèi aab"b ozzaatlal pep .1 6-31
dd voolrumeU)n.a b ibliogpriaafic ao mpleèt daa tian M . DEHN P.H EEGARD, Analysis
situisn,E ncyklopdiierd Miaet hematiWsicshseenn scBha.,G f .t eTenu,b neLre,i pzig
1907l,O ,v oI.3 , pp.1 53-200T.a ttichee stratengeilme a neggiiar ec ontroesempi
teoremdai E ulesro nop resentadtae L akatosso ttiol p rofildoe ll"ar icostruzione
arlazi onalned "d ialocghoe c ostitiuilCs acpe itIo dlioq uestov olumee n ellneo ted al
puntdoi v istdae al storia reale".
l Il
Introduzione
sonvoi vai vae nuatc eo ncespsiiuoo mnein,oe spliccoinit lfe a,l libi
lis.mR oovesciaalnldolora pa r ospetdtiicLeva ak,a taonsc,hl eev ie
percoirnsp er eceddeinvzean ttaannoti on terepsesraln ots it orico
quanitr oi suclhte"a tprio vvisor"i aacmceenttteiamo.
Mai lf allliisblmiaok atonsoinpa unòov enriard icalrmiednitmee n
siondaatlosl tae sassas iommaotdiecara?nL ac onceziipoontee tico-de
duttdievlatl eeo rmiaet ematsiehc arh ien uncailaeltavo i dednezpiar in
ciphia p urmeo strcahteop, u ra vencdaor atctoenrgee tt(uedrraile
vanddoa p rincdiic pair atctoenrgee t)t,ui t reaolreemsio n"oev rità
rela"t.Li e'vnenuciadtiEo u leè,ra buondi ri"tertloa,t ivavmeente
roi"n q unat,os otcteor ctoen diz-icoonmipe i us oparbab iasmpoe
ciucatèo v ermoe,n tirnea ltèr fea ol.s inu ns endseogl e nere
-
chep,e re sempcieor,et pii stemdoiil moÈpg ois tamzairoxnieps atral8a
nod elvleer imtaàt ematciocmhe"e ev rictoàn c"re.Vt aep ersòu bito
detcthoel as tesdsiana miinctae arlnr ai gomraet emarteincdaoe p ri
mav isltasa i tuazailoqnueab natno,a a llemednaopl u ntdoiv isltoa
gicos:e mbirnaf aptotsis iebsipllei ctiatlcaior ned iz(ia"os nsiu nzioni
impilti"ec,"e lmmin asc"o,escc t).i qeu inrdiif ormilu "letaormreae "i n
modor igoroscamoernrteTeta tlèoe .s tapteoer s empli'toat eggiamen
tod elsltoe sso Pcoiirtncacalqa eur eés t(ifcornq.eu esvtoole u,pm. 8 5,
not8a7 ).
Ma lpoas izidoinL ea katèdo isv ersseqa u;e lclhaie np iou ccasio
niP oincoaffrréèe l av ersidoenlecl rae sdceiltmlaaa t emaptriocpar ia
di unai ncf ualise ee sigedniz er isgeomrber aanncoo irmap orisni
modon ormatniovndo i scutliavb eirlseil,oa nkea tohsaii annvaea clel e
spalslileaa c onsapevdoelleslztazo ar idceicita àn odneirl i gosrieia
risultati dleolglic'ciiarn gcdlaasi gt ienssesi is taesmsii om(afct.ri ci
p.96).
Primdia a pprofoqnudeisrpteuo n tmoi p aroeppo rtuncoh iarire
unaq uestpiroenlei m.iS neda aur neap aritlte e sltaok atorsiimaannod a
espliciatdaH meegneètli e,n negabilpea rdct'heaeu l ntor atd eerim ini
dir iferipmieurn itloe v-ansteni o ni lr iferidmoemnitnoa ntèe
-
lac oncezfiaolnsei ucadziKi aornPlio sptpaeu rn,od ecir ittirclai'l ,a
tr,op idu urdie lla trcahdesi irz iifaoàln ldeai aleEt,tn iactau.r almen
tei,lp aralcloenPl oop pveire inmem ed:ia alltedo oman"docem ec re
scel as cie?n,"z ca"omec reslcame a tema?t"Pi ocpapeer L akatos
dannroi spsoismt.ieP l oippeinr p,a rti,ca offlearrcmehaen elslcai enza
(empiritcuat)t an ostcroan oscèec noznag ettepu rroacleead pep,u nto,
"tentntilvaeir roriL"a.k athoads u nqsueem plicemente adattato
per
le poppecrdi nllmea temactoimcleao ,s testsiot doilq ou esvtoo
liumiammdeen ,doeD iseint mtrnnoovl .l'v1ii/1ls"Pr{,/ ooIlllI.{'pllt" : PtRmaid{cnv r'n lnlwl ."Ci iuo naRtletlatosrzu eeim ocbeorns anui gf,gun etirraL?iiza rcri ehio,is apmoasntdao
è,
pri• lllc'(iC'mpfdl I/,r tridl'O/dC' I ro'i/ll,l b'lII C"N.Il./I.. .'HlK". iC", i C"'. hiiII.dhIcl.ln l· 'li'dIl rl ,l' lC"vud 1d'...il> 1W Il ',.I 1 K'1<,R01) A7-J71,F.1 W4SC_Ko I".i spondence
lO
Introduzione
Proprliaot radizdieolnl"eav erictoàn cr"e (tucaia bbiamaol luso
pi6s opraam)m ettuen 'interprpeit6ar zaidolinmceea nftael liebdi lista
è los tesso Lakdaelitnoesa rnale al l'indtiea nctcoe ntiualpr reo prio
distadcacu on aa ffermazdiioP noep pesre concduoiè anchpeo sbsiile
rgagiungelraev erità senza tuttavia Deiscseae qrunee consapevoli.
stpor oposLiatkoa tionus n s aggsicor intetl1o 690:
Non sonod 'accocrodnol ar ecenetnef atizzazidoanp ea,r tdei P oppedre,ll a
possibidliii tmàb atteirnsq.iu alcchaes on ellvae rifitnàa lsee nzap eròe �serne
conaspevoEli.r oc ritivceor sqou esttae ssie nofainenqa u anteos scao ntraddice
unad ellmei ei deper ediletutne',i dcehaeh oa ppredsaolm arxis(meon onv edo
lar gaiondei a bbandonarla}.9
proposdietlolc eo nosceannzcehl eo giceh mea tematiche Engels
peAre smepioa ffermcah e" nona bbianmeos smuont ivdois paventarci
defla tcthoei lli vedlicl oon oscaec nuzoiag igs iamsoi,ta a ntod efi
nitqiuvaon ldoso o nsot atiip rteuctet"dil.eI onn stoimmnao,ndp oobcboi amo
avepra urdair iconosfcaellricbi.iL lait setssiie nofacnoemam,e natlal ora
Lakatnoosn,p uòe ssearlet crhoe" u nap eccdae fla llsimbo"id liiP opper
e udnif ettcoh ep er Lakoactcoosr "rceo rreggceornve e ros pirito
marximsetdai anlta[e . . dottrdienlali en finiptreo posidzeilpo rnoi
geot tdividneol l'U.n1"i 1l.v erso
Questo sppeirecghlaéa s itsemazioanses iomaptaiccAaeg, as2s i/
nont urbla' parpoccliaok atosIinau nnoa .l trsoc ritdtoop,oa vedre li-
9 NecessKinteya,al ned P opperrep,l iac au nac omunicadiz iWo.n Ken ea1ael la
confeenrzaan nuadleel lBar itSiocsih etyf art hePh ilosopohfSy c ien(c91e60 ).I nedito
fino aplulbab licazpioosnteuc moam ec ap7. d iP bilosoPpabpiecvraoslI,2 . , cLiact iot a
zionèe a p.1 52.
RiIuFniO.i,R E t oNmGaE1 L79AS4n,p,t. 8i 7-C.Df urbai.rnn Kci .hnqM eguARX ,aln, t doFe .tE taNo pG .E8 L3OSQ.p,u e ersXXVet,', u tplarths.i.sè m,oE o d itori
daL akationPs b ilosoPpabpiercvsao,lI 2 ., cpipt.1. 2,5 -126. ripreso
IlP hilosoPpahpiercsva,olI 2., cit., L'pi.m ma1g2di6ind. ei oc hec ompondei
infinpirtoep osiziilo nip rodgeeltlt'ou nèi vperressoei nntu en punto ndoidq aulees to
voleu,mp .9 3.
12S econ]doos epAhg ass(iT hel akatoRseivaonl utiinoR n., S .C oHEN,P .K .
FEYERABENDe M. W. WARTOFSKY( acu rad i)E,s saiynsM emoryo fl mreLak atos,
"BostoSnt udiiesnt heP hilosoofpSh cyi enc3e9",R, e idDeolr,d re1c9h7t6p ,p .92 -1i)l
ruool delli'oamsastsiarceab boeg gcio scia mbiartios peatltf oo rmalishmiol bertiano da
ridudrrraes ticalmape onrttea tac rdietldilicLa aa kataolsl" aoc ncezifoonremis aatl"L.a
prospett"idviaa leet ticpar obmlie"( p.20 )d iL akatnoosn r iuscirae rbebned ere
conot diq uegli sperv ilruipcpeimr actdaee mlalitani cc uai" lgia ssiogmein er"a inlso iste
ma die ntcuii inerisco1n9o) M.a gleis empi chet rAadgeaa lsls'ia en alidsail la
(P.
geometrpiearm ostrcaormee i lm atematpiocsot unluiov "ioc mod"i ent(ip er esempio
lare ttaall 'infinneiltlgoae ometafrfinieap ianeacc,. a) n ostarvvoi ssoi p ossopneor
fetmteant(ee p roficuamdern.tp ei,lio ltrpe.,1 5)r,i costvriuai" reten siodniec on
cet"t.oU na" dialetdtiid ciam ostraez cioonnfuit aziosniri i"t roavnac hnee lc ontesto
delleeq uaziodniiff erieanlczih,e s econdoA gassiin,v ecues,c iredbablel" arto ppoa n
gustac"o ncettualdiizL zaakzait(oopnpse. 1 81-9)r:i tenipaomsos ibciiloèer,,i costruire
rivlanetip orziodneil sltao rdiiqa u esitmop ortsaentttedo ir" em atematica uatpiplicata"
lizzagnldsioc hedmiiD imostrea zcioonnfiu taIzniq ounestisa.e dpeerò,, nonp ossiamo
addnetrasur cqiu esqtuees tiocniip. ;reme piuttossotsot enecroeme, t escien traclhee,
las tsesar iflesssiuolnslei' oamsatmiectati en l ucael cunpeo tenzidaellilt'àa pproccio
Dimostrazei coonnif utazcihoeun siu almmeanntcea innoa ltprreo spettdievlecl raes dcii ta
deal lconoscemnaztae matica.
11
Introduzione
neatiolp ropriinot erpeesrls eed imostrapzrieo-nfio r(moea slpie rimen
tim entaLlaik)a,t os aplals'sae dsealmtleee o raises iomatizzate:
Finoa do ggnie ssutneao rmiaat ematiincfao rmhalape o tuto sfaulglg'iarse
siomatizzazigoinàae b.b iamdoe ttcoh e,q uanduon at eorèia a ssiomatizzata,
E
qualsilaosgii ccoo mpetentien graddoi formalizzMaar lqau.e stsoi gnifica
è
chel ed imostraziinto enoir aises iomatipzozsastoenv oe nisro ttomeas usnea p e
rentorpirao cedudria v erificazei oqnuee stpou òv enifra ttion u n modod el
tuttmoe ccaniCcioò.s ignifiaclal ocrhae s ed imostriapmoon,i amiol,t eorema
Eulenre ls isteamsas iomatciocmop,l etamefnotrem alizdzia Sttoe enreodd
di
Eilenb13e règ i,mpossiabvielrede e ic ontroeseBmepnie?è, certcoh ee scludiamo
dia verael cucno ntroesefmoprimoa lizznaeblsi ilset e[maa ssumencdhoeil siste
ma sian onc ontraddittmoar nioon]a ;b biamaoff attgoa ranzailac uncah ei ln o
strsoi stefmoar macloen tentguat tiol m aterieamlpei rioc oq uasi-empciurii co
eravamroe almenitnet ereses caotnic uia vevamao c hef arnee lltae oriinfao r
maleN.o nc 'aèl ccurni tfeorrimopa ellrea c orretdtiue nzafz oar maazliilo�zn ze.
Questnoo ns igniafiffcaat ctoon tescthaer e udniam ostrafzoirone
malaeg giuunlgtae riinofroir mauztiiloainli lv aa lutazriaoznieo ndaelle
teoreimnaq uestisoint er;a tstoaldi o una rgomceonnttolr ado e fini
tividteàl dliem torsaizf ioornmlOab il. i.
Lakatfoasd u nquiec ontcio nu nat radizcihoen ee cghliia m(ai n
sensloa t"oo)fr matlai"sl,at radizcihoetn een dae i dentilfiamc aare
tematciocnqa u elplaar tico"lasatrrea zcihoens eo stitau tiesocremi ae
tematiscihset efmoir m,a al diimostraczeirotsneei q uendzife o rmule
benf ormatae d,efin izion'is tratagaebmbmrie vi'a cthiesv oino' teo
ricamennotnen ecessmaar i''t,i pograficcaomnevnentntei"i e '(uqesto
volu,m e39)I.nq uesptrao spe,te tnitvrcaou il an oziodnie" iln
guaggppie.or fe"t,ct iooaèr tificei naolnae m big-uod allgar ammatica
rigorosasmpeenctiefi -cahtaar affinaltaoc aratteridzezlaltzeei oone
ri(em atemhae)tv iic"ais steimpio tetico-"d (ePdiu,etP rteiiavnioe,c. c)
inq uelplialis,o fistivcia"atisa s,t eamssii oamtico-f"o,rr imtaolriqnuaa,
sio ssseisonalni'tmem,ga indee l"d imosttreaorre"e cmoime" unap arti
taf atptearu ns olgoi ocateo grieo ccaotnas egtnri accsiualtcliaa r "tl.a'
Ma questa arrteiacloilzaztadaze ilpo rnoeg edtitL oe ibnniozn r i
solvoev,v iamelnatq eu,e stidoenlel" aec rtzea"z matemat"iOccac.o rre
- dicLea katos - saper tdriacs itòci hneèg uaesrseo lutaamfente
fidabiel cei òc heè cer!t oLa caratterizazsasziaiotominceo -formale
1161
delltee ormiaet ematpiecrhmee tdtire i sollvaeq ruee stidoenlaelff 'i da
bilniotnqà u,e ldleall ca ert(eetz aznatm oe nod eldlae fini)t.i vità
13S. E ILENDIlRGN,. S TEENROD, FoundatioofnA sl gebraTiocp ologPyr,i tnocneU ni
versPirteys Psr,i tnocne1 952.
PbilosopbPiacpaelr s, 2,c itp.p,.6 6-67.
14b i.I nq uessteon svoevn ogIo.nio n tcrpracntacthnie u meropsais sdiiD imostrazei oni
con14fu tazioniB,LO ORP,o lyhaL 'adnrd Abomina/0i1Leo vnist ioiusn", T heB ritish
dan . tbe
Journfaoltr h eH istooryfS ciCII1C1C(" ,1 97p8p).,2 45-2C7f2r.i. n p articpo.l2 a6r9.e
B.B RAITlIWAlTEs,p iegazsicoiennet itfirci.at, .F,e ltri.nMeilllai1n,9o 6 6,
15R . I.,a
29.
p.
16P hilosopbPiacpaelr vso,I. 2,c itp..,6 9.
12