Table Of ContentDerivatives Markets Page: i
Derivatives Markets Page: iii
Brief Contents Page: vii
Preface Page: xx
What is New in the Third Edition Page: xxi
Plan of the Book Page: xxii
Navigating the Material Page: xxiii
A Note on Examples Page: xxiv
Supplements Page: xxiv
Derivatives Markets Page: xxix
1 Introduction to Derivatives Page: 1
1.1 What is a Derivative? Page: 1
1.2 An Overview of Financial Markets Page: 2
Trading of Financial Assets Page: 2
Measures of Market Size and Activity Page: 4
Stock and Bond Markets Page: 5
Derivatives Markets Page: 6
1.3 The Role Of Financial Markets Page: 9
Financial Markets and the Averages Page: 9
Risk-Sharing Page: 10
1.4 The Uses Of Derivatives Page: 11
Uses of Derivatives Page: 11
Perspectives on Derivatives Page: 13
Financial Engineering and Security Design Page: 14
1.5 Buying And Short-Selling Financial Assets Page: 14
Transaction Costs and the Bid-Ask Spread Page: 14
Example 1.1 Page: 15
Ways to Buy or Sell Page: 15
Short-Selling Page: 16
Example: Short-Selling Wine Page: 17
Example: Short-Selling Stock Page: 18
The Lease Rate of an Asset Page: 18
Risk and Scarcity in Short-Selling Page: 18
Credit Risk Page: 19
Scarcity Page: 19
Chapter Summary Page: 19
Further Reading Page: 20
Problems Page: 20
Part 1 Insurance, Hedging, and Simple Strategies Page: 23
2 An Introduction to Forwards and Options Page: 25
2.1 Forward Contracts Page: 25
The Payoff on a Forward Contract Page: 29
Example 2.1 Page: 30
Graphing the Payoff on a Forward Contract Page: 30
Comparing a Forward and Outright Purchase Page: 30
Zero-Coupon Bonds in Payoff and Profit Diagrams Page: 33
Cash Settlement Versus Delivery Page: 34
Example 2.2 Page: 34
Credit Risk Page: 34
2.2 Call Options Page: 35
Example 2.3 Page: 35
Example 2.4 Page: 35
Option Terminology Page: 35
Payoff and Profit for a Purchased Call Option Page: 36
Example 2.5 Page: 36
Example 2.6 Page: 37
Payoff and Profit for a Written Call Option Page: 38
Example 2.7 Page: 40
2.3 Put Options Page: 40
Example 2.8 Page: 41
Payoff and Profit for a Purchased Put Option Page: 41
Example 2.9 Page: 41
Example 2.10 Page: 42
Payoff and Profit for a Written Put Option Page: 42
Example 2.11 Page: 44
The “Moneyness” of an Option Page: 44
2.4 Summary of Forward and Option Positions Page: 45
Positions Long with Respect to the Index Page: 45
Positions Short with Respect to the Index Page: 46
2.5 Options are Insurance Page: 47
Homeowner’s Insurance Is a Put Option Page: 48
But I Thought Insurance Is Prudent and Put Options Are Risky … Page: 48
Call Options Are Also Insurance Page: 49
2.6 Example: Equity-Linked CDS Page: 50
Graphing the Payoff on the CD Page: 50
Economics of the CD Page: 51
Why Equity-Linked CDs? Page: 52
Chapter Summary Page: 53
Further Reading Page: 54
Problems Page: 54
Appendix 2.A More on Buying a Stock Option Page: 57
Dividends Page: 57
Exercise Page: 57
Margins for Written Options Page: 58
Taxes Page: 58
3 Insurance, Collars, and Other Strategies Page: 61
3.1 Basic Insurance Strategies Page: 61
Insuring a Long Position: Floors Page: 61
Insuring a Short Position: Caps Page: 64
Selling Insurance Page: 65
Covered Call Writing. Page: 66
Covered Puts. Page: 66
3.2 Put-Call Parity Page: 68
Synthetic Forwards Page: 68
The Put-Call Parity Equation Page: 70
Example 3.1 Page: 70
Equivalence of Different Positions. Page: 70
No Arbitrage. Page: 71
3.3 Spreads and Collars Page: 71
Bull and Bear Spreads Page: 71
Example 3.2 Page: 72
Box Spreads Page: 73
Example 3.3 Page: 74
Ratio Spreads Page: 74
Collars Page: 74
Example 3.4 Page: 74
Example 3.5 Page: 76
Zero-Cost Collars. Page: 76
Understanding Collars. Page: 77
The Cost of the Collar and the Forward Price. Page: 78
3.4 Speculating on Volatility Page: 79
Straddles Page: 79
Strangle. Page: 79
Written Straddle. Page: 80
Butterfly Spreads Page: 80
Asymmetric Butterfly Spreads Page: 82
Chapter Summary Page: 84
Further Reading Page: 85
Problems Page: 86
4 Introduction to Risk Management Page: 89
4.1 Basic Risk Management: The Producer’s Perspective Page: 89
Hedging with a Forward Contract Page: 90
Insurance: Guaranteeing a Minimum Price with a Put Option Page: 91
Insuring by Selling a Call Page: 93
Adjusting the Amount of Insurance Page: 95
4.2 Basic Risk Management: The Buyer’s Perspective Page: 96
Hedging with a Forward Contract Page: 97
Insurance: Guaranteeing a Maximum Price with a Call Option Page: 97
4.3 Why Do Firms Manage Risk? Page: 99
An Example Where Hedging Adds Value Page: 100
Reasons to Hedge Page: 102
Taxes. Page: 102
Bankruptcy and Distress Costs. Page: 102
Costly External Financing. Page: 102
Increase Debt Capacity. Page: 103
Managerial Risk Aversion. Page: 103
Nonfinancial Risk Management. Page: 103
Reasons Not to Hedge Page: 103
Empirical Evidence on Hedging Page: 104
4.4 Golddiggers Revisited Page: 107
Selling the Gain: Collars Page: 107
A 420–440 Collar. Page: 107
A Zero-Cost Collar. Page: 108
The Forward Contract as a Zero-Cost Collar. Page: 109
Synthetic Forwards at Prices Other Than $420. Page: 110
Other Collar Strategies Page: 111
Paylater Strategies Page: 111
4.5 Selecting The Hedge Ratio Page: 112
Cross-Hedging Page: 112
Example 4.1 Page: 113
Quantity Uncertainty Page: 114
Chapter Summary Page: 117
Further Reading Page: 118
Problems Page: 118
Part 2 Forwards, Futures, and Swaps Page: 123
5 Financial Forwards and Futures Page: 125
5.1 Alternative Ways to Buy a Stock Page: 125
5.2 Prepaid Forward Contracts on Stock Page: 126
Pricing the Prepaid Forward by Analogy Page: 127
Pricing the Prepaid Forward by Discounted Present Value Page: 127
Pricing the Prepaid Forward by Arbitrage Page: 127
Pricing Prepaid Forwards with Dividends Page: 128
Discrete Dividends Page: 129
Example 5.1 Page: 129
Continuous Dividends Page: 129
Example 5.2 Page: 130
5.3 Forward Contracts on Stock Page: 131
Does the Forward Price Predict the Future Spot Price? Page: 132
Creating a Synthetic Forward Contract Page: 133
Synthetic Forwards in Market-Making and Arbitrage Page: 135
No-Arbitrage Bounds with Transaction Costs Page: 136
Quasi-Arbitrage Page: 137
An Interpretation of the Forward Pricing Formula Page: 138
5.4 Futures Contracts Page: 138
The S&P 500 Futures Contract Page: 139
Margins and Marking to Market Page: 140
Comparing Futures and Forward Prices Page: 143
Arbitrage in Practice: S&P 500 Index Arbitrage Page: 143
Quanto Index Contracts Page: 145
5.5 Uses of Index Futures Page: 146
Asset Allocation Page: 146
Switching from Stocks to T-bills Page: 146
General Asset Allocation Page: 146
Cross-hedging with Index Futures Page: 147
Cross-hedging with Perfect Correlation Page: 147
Cross-Hedging with Imperfect Correlation Page: 148
Example 5.3 Page: 149
Risk Management for Stock-Pickers Page: 150
5.6 Currency Contracts Page: 150
Currency Prepaid Forward Page: 150
Example 5.4 Page: 151
Currency Forward Page: 151
Example 5.5 Page: 152
Covered Interest Arbitrage Page: 152
Example 5.6 Page: 152
5.7 Eurodollar Futures Page: 153
Chapter Summary Page: 156
Further Reading Page: 158
Problems Page: 158
Appendix 5.A Taxes and the Forward Rate Page: 161
Appendix 5.B Equating Forwards and Futures Page: 162
Appendix 5.C Forward and Futures Prices Page: 162
6 Commodity Forwards and Futures Page: 163
6.1 Introduction to Commodity Forwards Page: 164
Examples of Commodity Futures Prices Page: 164
Differences Between Commodities and Financial Assets Page: 165
Commodity Terminology Page: 166
6.2 Equilibrium Pricing of Commodity Forwards Page: 167
6.3 Pricing Commodity Forwards by Arbitrage Page: 168
An Apparent Arbitrage Page: 168
Short-selling and the Lease Rate Page: 170
No-Arbitrage Pricing Incorporating Storage Costs Page: 171
Cash-and-Carry Arbitrage Page: 172
Example 6.1 Page: 173
Reverse Cash-and-Carry Arbitrage Page: 173
Convenience Yields Page: 174
Summary Page: 175
6.4 Gold Page: 175
Gold Leasing Page: 176
Evaluation of Gold Production Page: 177
Example 6.2 Page: 177
6.5 Corn Page: 178
6.6 Energy Markets Page: 179
Electricity Page: 179
Natural Gas Page: 180
Oil Page: 182
Oil Distillate Spreads Page: 184
Example 6.3 Page: 185
6.7 Hedging Strategies Page: 185
Basis Risk Page: 185
Hedging Jet Fuel with Crude Oil Page: 187
Weather Derivatives Page: 188
6.8 Synthetic Commodities Page: 189
Chapter Summary Page: 191
Further Reading Page: 191
Problems Page: 192
7 Interest Rate Forwards and Futures Page: 195
7.1 Bond Basics Page: 195
Zero-Coupon Bonds Page: 196
Implied Forward Rates Page: 197
Example 7.1 Page: 198
Coupon Bonds Page: 199
Example 7.2 Page: 199
Zeros from Coupons Page: 200
Interpreting the Coupon Rate Page: 201
Continuously Compounded Yields Page: 202
7.2 Forward Rate Agreements, Eurodollar Futures, and Hedging Page: 202
Forward Rate Agreements Page: 203
FRA Settlement in Arrears. Page: 203
FRA Settlement at the Time of Borrowing Page: 203
Synthetic FRAs Page: 204
Example 7.3 Page: 205
Eurodollar Futures Page: 206
Convexity Bias and Tailing Page: 207
LIBOR Versus 3-Month T-Bills. Page: 209
7.3 Duration and Convexity Page: 211
Price Value of a Basis Point and DV01 Page: 211
Example 7.4 Page: 212
Duration Page: 212
Example 7.5 Page: 213
Example 7.6 Page: 213
Example 7.7 Page: 214
Duration Matching Page: 214
Example 7.8 Page: 215
Convexity Page: 215
Example 7.9 Page: 216
7.4 Treasury-Bond and Treasury-Note Futures Page: 217
Example 7.10 Page: 218
7.5 Repurchase Agreements Page: 220
Example 7.11 Page: 220
Chapter Summary Page: 222
Further Reading Page: 224
Problems Page: 224
Appendix 7.A INTEREST RATE AND BOND PRICE CONVENTIONS Page: 228
Bonds Page: 228
Example 7.12 Page: 229
Example 7.13 Page: 229
Example 7.14 Page: 230
Bills Page: 230
8 Swaps Page: 233
8.1 An Example of A Commodity Swap Page: 233
Physical Versus Financial Settlement Page: 234
Why Is the Swap Price Not $110.50? Page: 236
The Swap Counterparty Page: 237
The Market Value of a Swap Page: 238
8.2 Computing The Swap Rate in General Page: 240
Fixed Quantity Swaps Page: 240
Swaps with Variable Quantity and Price Page: 241
8.3 Interest Rate Swaps Page: 243
A Simple Interest Rate Swap Page: 243
Pricing and the Swap Counterparty Page: 244
Swap Rate and Bond Calculations Page: 246
Example 8.1 Page: 246
The Swap Curve Page: 246
The Swap’s Implicit Loan Balance Page: 248
Deferred Swaps Page: 249
Related Swaps Page: 250
Why Swap Interest Rates? Page: 251
Amortizing and Accreting Swaps Page: 252
8.4 Currency Swaps Page: 252
Example 8.2 Page: 254
Example 8.3 Page: 254
Currency Swap Formulas Page: 255
Other Currency Swaps Page: 256
8.5 Swaptions Page: 256
Example 8.4 Page: 257
8.6 Total Return Swaps Page: 257
Example 8.5 Page: 258
Chapter Summary Page: 259
Further Reading Page: 260
Problems Page: 261
Part 3 Options Page: 263
9 Parity and Other Option Relationships Page: 265
9.1 Put-Call Parity Page: 265
Options on Stocks Page: 266
Example 9.1 Page: 267
Example 9.2 Page: 268
Synthetic stock. Page: 268
Synthetic T-bills. Page: 268
Synthetic options. Page: 269
Options on Currencies Page: 269
Options on Bonds Page: 269
Dividend Forward Contracts Page: 269
9.2 Generalized Parity And Exchange Options Page: 270
Example 9.3 Page: 271
Options to Exchange Stock Page: 272
What Are Calls and Puts? Page: 272
Currency Options Page: 273
9.3 Comparing Options With Respect To Style, Maturity, And Strike Page: 275
European Versus American Options Page: 276
Maximum and Minimum Option Prices Page: 276
Calls. Page: 276
Puts. Page: 277
Early Exercise for American Options Page: 277
Calls on a non-dividend-paying stock. Page: 277
Exercising calls just prior to a dividend. Page: 278
Early exercise for puts. Page: 278
Early exercise in general. Page: 279
Time to Expiration Page: 279
American options. Page: 280
European options. Page: 280
European options when the strike price grows over time. Page: 280
Different Strike Prices Page: 281
Example 9.4 Page: 283
Example 9.5 Page: 284
Example 9.6 Page: 284
Exercise and Moneyness Page: 286
Chapter Summary Page: 286
Further Reading Page: 287
Problems Page: 288
Appendix 9.A Parity Bounds For American Options Page: 291
Appendix 9.B Algebraic Proofs Of Strike-Price Relations Page: 292
10 Binomial Option Pricing: Basic Concepts Page: 293
10.1 A One-Period Binomial Tree Page: 293
Computing the Option Price Page: 294
The Binomial Solution Page: 295
Example 10.1 Page: 297
Arbitraging a Mispriced Option Page: 297
The Option is Overpriced Page: 297
The Option is Underpriced Page: 298
A Graphical Interpretation of the Binomial Formula Page: 298
Risk-Neutral Pricing Page: 299
10.2 Constructing a Binomial Tree Page: 300
Continuously Compounded Returns Page: 300
Example 10.2 Page: 301
Example 10.3 Page: 301
Example 10.4 Page: 301
Volatility Page: 301
Constructing u and d Page: 302
Estimating Historical Volatility Page: 303
One-Period Example with a Forward Tree Page: 305
10.3 Two or More Binomial Periods Page: 306
A Two-Period European Call Page: 306
Constructing the Tree Page: 306
Pricing the Call Option Page: 307
Many Binomial Periods Page: 308
10.4 Put Options Page: 309
10.5 American Options Page: 310
10.6 Options on Other Assets Page: 312
Option on a Stock Index Page: 312
Options on Currencies Page: 312
Options on Futures Contracts Page: 314
Options on Commodities Page: 315
Options on Bonds Page: 316
Summary Page: 317
Chapter Summary Page: 318
Further Reading Page: 318
Problems Page: 319
Appendix 10.A Taxes and Option Prices Page: 322
11 Binomial Option Pricing: Selected Topics Page: 323
11.1 Understanding Early Exercise Page: 323
11.2 Understanding Risk-Neutral Pricing Page: 325
The Risk-Neutral Probability Page: 326
Pricing an Option Using Real Probabilities Page: 327
A One-Period Example Page: 328
A Multi-Period Example Page: 329
11.3 The Binomial Tree and Lognormality Page: 330
The Random Walk Model Page: 330
Modeling Stock Prices as a Random Walk Page: 331
The Binomial Model Page: 332
Lognormality and the Binomial Model Page: 333
Alternative Binomial Trees Page: 335
The Cox-Ross-Rubinstein Binomial Tree Page: 335
The Lognormal Tree Page: 336
Is the Binomial Model Realistic? Page: 336
11.4 Stocks Paying Discrete Dividends Page: 336
Modeling Discrete Dividends Page: 337
Problems with the Discrete Dividend Tree Page: 337
A Binomial Tree Using the Prepaid Forward Page: 338
Chapter Summary Page: 340
Further Reading Page: 340
Problems Page: 341
Appendix 11.A Pricing Options with True Probabilities Page: 343
Appendix 11.B Why Does Risk-Neutral Pricing Work? Page: 343
Utility-Based Valuation Page: 344
Standard Discounted Cash Flow Page: 345
Risk-Neutral Pricing Page: 345
Physical vs. Risk-Neutral Probabilities Page: 346
Example Page: 347
State Prices Page: 347
Valuing the Risk-Free Bond Page: 347
Valuing the Risky Stock Using Real Probabilities Page: 347
Risk-Neutral Valuation of the Stock Page: 347
12 The Black-Scholes Formula Page: 349
12.1 Introduction to the Black-Scholes Formula Page: 349
Call Options Page: 349
Example 12.1 Page: 351
Put Options Page: 352
Example 12.2 Page: 352
When Is the Black-Scholes Formula Valid? Page: 352
12.2 Applying the Formula to Other Assets Page: 353
Options on Stocks with Discrete Dividends Page: 354
Example 12.3 Page: 354
Options on Currencies Page: 354
Example 12.4 Page: 355
Options on Futures Page: 355
Example 12.5 Page: 355
12.3 Option Greeks Page: 355
Definition of the Greeks Page: 356
Delta Page: 356
Gamma Page: 358
Vega Page: 359
Theta Page: 359
Rho Page: 360
Psi Page: 360
Greek Measures for Portfolios Page: 361
Example 12.6 Page: 361
Option Elasticity Page: 362
Dollar Risk of the Option Page: 362
Example 12.7 Page: 362
Percentage Risk of the Option Page: 362
Example 12.8 Page: 363
The Volatility of an Option Page: 363
The Risk Premium and Beta of an Option Page: 363
The Sharpe Ratio of an Option Page: 365
The Elasticity and Risk Premium of a Portfolio Page: 365
12.4 Profit Diagrams Before Maturity Page: 366
Purchased Call Option Page: 366
Example 12.9 Page: 366
Calendar Spreads Page: 367
12.5 Implied Volatility Page: 368
Computing Implied Volatility Page: 369
Example 12.10 Page: 369
Using Implied Volatility Page: 370
12.6 Perpetual American Options Page: 372
Valuing Perpetual Options Page: 373
Example 12.11 Page: 374
Barrier Present Values Page: 374
Chapter Summary Page: 374
Further Reading Page: 375
Problems Page: 375
Appendix 12.A THE STANDARD NORMAL DISTRIBUTION Page: 378
Appendix 12.B FORMULAS FOR OPTION GREEKS Page: 378
Delta (Δ) Page: 379
Gamma (Γ) Page: 379
Theta (θ) Page: 379
Vega Page: 379
Rho (ρ) Page: 380
Psi (ψ) Page: 380
13 Market-Making and Delta-Hedging Page: 381
13.1 What do Market-Makers do? Page: 381
13.2 Market-Maker Risk Page: 382
Option Risk in the Absence of Hedging Page: 382
Delta and Gamma as Measures of Exposure Page: 383
13.3 Delta-Hedging Page: 384
An Example of Delta-Hedging for 2 Days Page: 385
Day 0 Page: 385
Day 1: Marking-to-Market Page: 385
Day 1: Rebalancing the Portfolio Page: 385
Day 2: Marking-to-Market Page: 385
Interpreting the Profit Calculation Page: 385
Delta-Hedging for Several Days Page: 387
A Self-Financing Portfolio: The Stock Moves One σ Page: 389
13.4 The Mathematics of Delta-Hedging Page: 389
Using Gamma to Better Approximate the Change in the Option Price Page: 390
Example 13.1 Page: 390
Delta-Gamma Approximations Page: 391
Theta: Accounting for Time Page: 392
Example 13.2 Page: 393
Understanding the Market-Maker’s Profit Page: 393
13.5 The Black-Scholes Analysis Page: 395
The Black-Scholes Argument Page: 395
Delta-Hedging of American Options Page: 396
What Is the Advantage to Frequent Re-Hedging? Page: 397
Example 13.3 Page: 398
Delta-Hedging in Practice Page: 398
Gamma-Neutrality Page: 399
13.6 Market-Making as Insurance Page: 402
Insurance Page: 402
Market-Makers Page: 403
Chapter Summary Page: 403
Further Reading Page: 404
Problems Page: 404
Appendix 13.A TAYLOR SERIES APPROXIMATIONS Page: 406
Appendix 13.B GREEKS IN THE BINOMIAL MODEL Page: 407
14 Exotic Options: I Page: 409
14.1 Introduction Page: 409
14.2 Asian Options Page: 410
XYZ’s Hedging Problem Page: 410
Options on the Average Page: 411
The Definition of the Average Page: 411
Example 14.1 Page: 412
Whether the Average Is Used as the Asset Price or the Strike Page: 412
Comparing Asian Options Page: 412
An Asian Solution for XYZ Page: 413
14.3 Barrier Options Page: 414
Types of Barrier Options Page: 415
Currency Hedging Page: 416
14.4 Compound Options Page: 418
Compound Option Parity Page: 419
Options on Dividend-Paying Stocks Page: 419
Example 14.2 Page: 420
Currency Hedging with Compound Options Page: 421
14.5 Gap Options Page: 421
14.6 Exchange Options Page: 423
European Exchange Options Page: 424
Example 14.3 Page: 425
Chapter Summary Page: 425
Further Reading Page: 426
Problems Page: 426
Appendix 14.A Pricing Formulas for Exotic Options Page: 429
Asian Options Based on the Geometric Average Page: 430
Average Price Options Page: 430
Average Strike Options Page: 430
Compound Options Page: 431
Infinitely Lived Exchange Option Page: 432
Part 4 Financial Engineering and Applications Page: 435
15 Financial Engineering and Security Design Page: 437
15.1 The Modigliani-Miller Theorem Page: 437
15.2 Structured Notes without Options Page: 438
Single Payment Bonds Page: 438
Zero-coupon equity-linked bond Page: 440
Example 15.1 Page: 440
Example 15.2 Page: 440
Zero-coupon commodity-linked bond Page: 440
Example 15.3 Page: 440
Zero-Coupon Currency-Linked Bond Page: 441
Multiple Payment Bonds Page: 441
Equity-linked bonds Page: 442
Example 15.4 Page: 443
Commodity-linked bonds Page: 443
Example 15.5 Page: 443
Perpetuities Page: 444
Currency-linked bonds Page: 444
15.3 Structured Notes with Options Page: 445
Convertible Bonds Page: 446
Valuing and Structuring an Equity-Linked CD Page: 447
Structuring the Product Page: 448
Alternative Structures Page: 448
Example 15.6 Page: 449
Reverse Convertible Bonds Page: 449
Tranched Payoffs Page: 451
Variable Prepaid Forwards Page: 452
Example 15.7 Page: 453
15.4 Strategies Motivated by Tax and Regulatory Considerations Page: 453
Capital Gains Deferral Page: 454
Hedging by Corporate Insiders Page: 455
Tax Deferral for Corporations Page: 456
Marshall & Ilsley SPACES Page: 458
The M&I Issue Page: 458
Design Considerations Page: 459
15.5 Engineered Solutions for Golddiggers Page: 460
Gold-Linked Notes Page: 460
Notes with Embedded Options Page: 462
Chapter Summary Page: 463
Further Reading Page: 464
Problems Page: 464
16 Corporate Applications Page: 469
16.1 Equity, Debt, And Warrants Page: 469
Debt and Equity as Options Page: 469
Example 16.1 Page: 470
Example 16.2 Page: 472
Leverage and the Expected Return on Debt and Equity Page: 472
Example 16.3 Page: 473
Conflicts Between Debt and Equity Page: 475
Multiple Debt Issues Page: 477
Warrants Page: 478
Convertible Bonds Page: 479
Example 16.4 Page: 480
Example 16.5 Page: 480
Callable Bonds Page: 481
Callable Nonconvertible Bonds Page: 482
Callable Convertible Bonds Page: 483
Bond Valuation Based on the Stock Price Page: 485
Other Bond Features Page: 485
Put Warrants Page: 486
16.2 Compensation Options Page: 487
The Use of Compensation Options Page: 487
Valuation of Compensation Options Page: 489
Whose Valuation Page: 489
Valuation Inputs Page: 490
Repricing of Compensation Options Page: 492
Example 16.6 Page: 492
Reload Options Page: 493
Level 3 Communications Page: 495
Example 16.7 Page: 495
Valuing the Outperformance Feature Page: 496
Accounting for the Multiplier Page: 497
16.3 The Use Of Collars In Acquisitions Page: 498
The Northrop Grumman—TRW merger Page: 499
Chapter Summary Page: 502
Further Reading Page: 503
Problems Page: 503
Appendix 16.A An Alternative Approach to Expensing Option Grants Page: 507
17 Real Options Page: 509
17.1 Investment And The Npv Rule Page: 509
Static NPV Page: 510
The Correct Use of NPV Page: 511
The Project as an Option Page: 511
17.2 Investment Under Uncertainty Page: 512
A Simple DCF Problem Page: 513
Example 17.1 Page: 513
Valuing Derivatives on the Cash Flow Page: 514
Example 17.2 Page: 514
Evaluating a Project with a 2-Year Investment Horizon Page: 515
A Tree for Project Value Page: 516
Solving for the Optimal Investment Decision Page: 517
Evaluating the Project with an Infinite Investment Horizon Page: 518
17.3 Real Options In Practice Page: 519
Peak-Load Electricity Generation8 Page: 519
Research and Development Page: 523
17.4 Commodity Extraction As An Option Page: 525
Single-Barrel Extraction under Certainty Page: 525
Optimal Extraction Page: 526
Value and Appreciation of the Land Page: 527
Using the Option Pricing Formula Page: 527
Changing Extraction Costs Page: 527
Gold Extraction Revisited Page: 528
Single-Barrel Extraction under Uncertainty Page: 528
Valuing an Infinite Oil Reserve Page: 530
Valuing the Producing Firm Page: 530
Valuing the Option to Invest Page: 530
Example 17.3 Page: 530
Example 17.4 Page: 531
17.5 Commodity Extraction With Shutdown And Restart Options Page: 531
Permanent Shutting Down Page: 533
Example 17.5 Page: 533
The value of the producing well Page: 534
Investing When Shutdown Is Possible Page: 535
Example 17.6 Page: 536
Restarting Production Page: 536
Example 17.7 Page: 536
Additional Options Page: 537
Chapter Summary Page: 538
Further Reading Page: 538
Problems Page: 538
Appendix 17.A Calculation of Optimal Time to Drill an Oil Well Page: 541
Appendix 17.B The Solution with Shutting Down and Restarting Page: 541
Part 5 Advanced Pricing Theory and Applications Page: 543
18 The Lognormal Distribution Page: 545
18.1 The Normal Distribution Page: 545
Example 18.1 Page: 548
Converting a Normal Random Variable to Standard Normal Page: 548
Example 18.2 Page: 549
Sums of Normal Random Variables Page: 549
The Central Limit Theorem Page: 550
18.2 The Lognormal Distribution Page: 550
18.3 A Lognormal Model of Stock Prices Page: 552
Example 18.3 Page: 553
Example 18.4 Page: 555
Example 18.5 Page: 555
18.4 Lognormal Probability Calculations Page: 555
Probabilities Page: 556
Lognormal Prediction Intervals Page: 557
Example 18.6 Page: 557
Example 18.7 Page: 558
The Conditional Expected Price Page: 559
The Black-Scholes Formula Page: 561
18.5 Estimating the Parameters of a Lognormal Distribution Page: 562
Example 18.8 Page: 562
18.6 How are Asset Prices Distributed? Page: 564
Histograms Page: 564
Normal Probability Plots Page: 566
Example 18.9 Page: 567
Example 18.10 Page: 567
Chapter Summary Page: 569
Further Reading Page: 569
Problems Page: 570
Appendix 18.A The Expectation of a Lognormal Variable Page: 571
Appendix 18.B Constructing a Normal Probability Plot Page: 572
19 Monte Carlo Valuation Page: 573
19.1 Computing the Option Price as a Discounted Expected Value Page: 573
Valuation with Risk-Neutral Probabilities Page: 574
Valuation with True Probabilities Page: 575
19.2 Computing Random Numbers Page: 577
19.3 Simulating Lognormal Stock Prices Page: 578
Simulating a Sequence of Stock Prices Page: 578
19.4 Monte Carlo Valuation Page: 579
Monte Carlo Valuation of a European Call Page: 580
Example 19.1 Page: 580
Accuracy of Monte Carlo Page: 581
Arithmetic Asian Option Page: 582
Example 19.2 Page: 583
19.5 Efficient Monte Carlo Valuation Page: 584
Control Variate Method Page: 584
Other Monte Carlo Methods Page: 587
19.6 Valuation of American Options Page: 588
19.7 The Poisson Distribution Page: 591
Example 19.3 Page: 592
19.8 Simulating Jumps with the Poisson Distribution Page: 593
Simulating the Stock Price with Jumps Page: 593
Multiple Jumps Page: 596
19.9 Simulating Correlated Stock Prices Page: 597
Generating n Correlated Lognormal Random Variables Page: 597
Chapter Summary Page: 599
Further Reading Page: 599
Problems Page: 599
Appendix 19.A Formulas for Geometric Average Options Page: 602
20 Brownian Motion and Itô’s Lemma Page: 603
20.1 The Black-Scholes Assumption About Stock Prices Page: 603
20.2 Brownian Motion Page: 604
Definition of Brownian Motion Page: 604
Properties of Brownian Motion Page: 606
Arithmetic Brownian Motion Page: 607
The Ornstein-Uhlenbeck Process Page: 608
20.3 Geometric Brownian Motion Page: 608
Lognormality Page: 609
Relative Importance of the Drift and Noise Terms Page: 610
Multiplication Rules Page: 610
Modeling Correlated Asset Prices Page: 612
Example 20.1 Page: 613
20.4 ItÔ’s Lemma Page: 613
Functions of an Itô Process Page: 614
Proposition 20.1 Page: 615
Example 20.2 Page: 615
Example 20.3 Page: 616
Multivariate Itô’s Lemma Page: 616
Proposition 20.2 Page: 616
Example 20.4 Page: 616
Example 20.5 Page: 617
20.5 The Sharpe Ratio Page: 617
20.6 Risk-Neutral Valuation Page: 618
A Claim That Pays S(T)a Page: 619
Proposition 20.3 Page: 619
Specific Examples Page: 620
Valuing a Claim on SaQb Page: 621
Proposition 20.4 Page: 621
20.7 Jumps In The Stock Price Page: 622
Proposition 20.5 Page: 623
Chapter Summary Page: 624
Further Reading Page: 624
Problems Page: 624
Appendix 20.A Valuation Using Discounted Cash Flow Page: 626
b21 The Black-Scholes-Merton Equation Page: 627
21.1 Differential Equations and Valuation Under Certainty Page: 627
The Valuation Equation Page: 627
Bonds Page: 628
Dividend-Paying Stocks Page: 629
The General Structure Page: 629
21.2 The Black-Scholes Equation Page: 629
Verifying the Formula for a Derivative Page: 631
Simple Present Value Calculations. Page: 631
All-Or-Nothing Options Page: 633
The Black-Scholes Equation and Equilibrium Returns Page: 634
What If the Underlying Asset Is Not an Investment Asset? Page: 635
Example 21.1 Page: 636
21.3 Risk-Neutral Pricing Page: 637
Interpreting the Black-Scholes Equation Page: 637
The Backward Equation Page: 637
Derivative Prices as Discounted Expected Cash Flows Page: 638
21.4 Changing the Numeraire Page: 639
Example 21.2 Page: 639
Proposition 21.1 Page: 640
Example 21.3 Page: 641
21.5 Option Pricing When the Stock Price Can Jump Page: 642
Merton’s Solution for Diversifiable Jumps Page: 642
Chapter Summary Page: 644
Further Reading Page: 644
Problems Page: 645
Appendix 21.A Multivariate Black-Scholes Analysis Page: 646
Appendix 21.B Proof of Proposition 21.1 Page: 646
Appendix 21.C Solutions For Prices and Probabilities Page: 647
22 Risk-Neutral and Martingale Pricing Page: 649
22.1 Risk Aversion and Marginal Utility Page: 650
22.2 The First-Order Condition for Portfolio Selection Page: 652
22.3 Change of Measure and Change of Numeraire Page: 654
Change of Measure Page: 655
The Martingale Property Page: 655
Girsanov’s Theorem Page: 657
22.4 Examples of Numeraire and Measure Change Page: 658
The Money-Market Account as Numeraire (Risk-Neutral Measure) Page: 659
The Money-Market Account Page: 659
The Money-Market Account as Numeraire Page: 660
Constructing a Process for Si(t) Page: 660
Interpretation Page: 661
Risky Asset as Numeraire Page: 662
Zero Coupon Bond as Numeraire (Forward Measure) Page: 662
22.5 Examples of Martingale Pricing Page: 663
Cash-or-Nothing Call Page: 663
Interpretation of Volatility Page: 664
Dividends Page: 665
Asset-or-Nothing Call Page: 665
The Black-Scholes Formula Page: 666
European Outperformance Option Page: 667
Option on a Zero-Coupon Bond Page: 667
22.6 Example: Long-Maturity Put Options Page: 667
The Black-Scholes Put Price Calculation Page: 668
Is the Put Price Reasonable? Page: 669
The Likelihood of Exercise and Expected Payoff Page: 669
Understanding the Option Price Page: 669
Discussion Page: 671
Chapter Summary Page: 671
Further Reading Page: 673
Problems Page: 673
Appendix 22.A The Portfolio Selection Problem Page: 676
The One-Period Portfolio Selection Problem Page: 676
The Risk Premium of an Asset Page: 678
Multiple Consumption and Investment Periods Page: 678
Appendix 22.B Girsanov’s Theorem Page: 679
The Theorem Page: 679
Constructing Multi-Asset Processes from Independent Brownian Motions Page: 680
Risk-Neutral Measure Page: 680
Risky Asset as Numeraire Page: 681
Appendix 22.C Risk-Neutral Pricing and Marginal Utility in the Binomial Model Page: 681
23 Exotic Options: II Page: 683
23.1 All-Or-Nothing Options Page: 683
Terminology Page: 683
Cash-or-Nothing Options Page: 684
Example 23.1 Page: 685
Asset-or-Nothing Options Page: 685
Example 23.2 Page: 686
Ordinary Options and Gap Options Page: 686
Example 23.3 Page: 687
Delta-Hedging All-or-Nothing Options Page: 687
23.2 All-Or-Nothing Barrier Options Page: 688
Cash-or-Nothing Barrier Options Page: 690
Down-And-In Cash Call. Page: 691
Deferred Down Rebate Option Page: 691
Down-And-Out Cash Call. Page: 691
Down-And-In Cash Put. Page: 692
Down-And-Out Cash Put. Page: 692
Example 23.4 Page: 692
Example 23.5 Page: 693
Up-And-In Cash Put. Page: 693
Deferred Up Rebate Page: 693
Up-And-Out Cash Put. Page: 694
Up-And-In Cash Call. Page: 694
Up-And-Out Cash Call. Page: 694
Asset-or-Nothing Barrier Options Page: 694
Rebate Options Page: 694
Perpetual American Options Page: 695
23.3 Barrier Options Page: 695
Example 23.6 Page: 696
23.4 Quantos Page: 697
The Yen Perspective Page: 698
Example 23.7 Page: 699
The Dollar Perspective Page: 699
Example 23.8 Page: 701
A Binomial Model for the Dollar-Denominated Investor Page: 701
Example 23.9 Page: 703
23.5 Currency-Linked Options Page: 704
Foreign Equity Call Struck in Foreign Currency Page: 705
Example 23.10 Page: 706
Foreign Equity Call Struck in Domestic Currency Page: 706
Example 23.11 Page: 706
Fixed Exchange Rate Foreign Equity Call Page: 706
Example 23.12 Page: 707
Equity-Linked Foreign Exchange Call Page: 707
Example 23.13 Page: 708
23.6 Other Multivariate Options Page: 708
Options on the Best of Two Assets Page: 708
Basket Options Page: 710
Chapter Summary Page: 711
Further Reading Page: 711
Problems Page: 712
Appendix 23.A The Reflection Principle Page: 715
24 Volatility Page: 717
24.1 Implied Volatility Page: 717
24.2 Measurement and Behavior of Volatility1 Page: 720
Historical Volatility Page: 720
Exponentially Weighted Moving Average Page: 721
Example 24.1 Page: 722
Time-Varying Volatility: ARCH Page: 723
The ARCH Model Page: 724
ARCH Volatility Forecasts Page: 726
The GARCH Model Page: 727
Maximum Likelihood Estimation of a GARCH Model Page: 727
Volatility Forecasts Page: 728
Example 24.2 Page: 729
Realized Quadratic Variation Page: 729
24.3 Hedging and Pricing Volatility Page: 731
Variance and Volatility Swaps Page: 731
Example 24.3 Page: 731
Example 24.4 Page: 732
Pricing Volatility Page: 732
The Log Contract Page: 733
Valuing the Log Contract Page: 734
Computing the VIX Page: 735
24.4 Extending the Black-Scholes Model Page: 736
Jump Risk and Implied Volatility Page: 737
Constant Elasticity of Variance Page: 737
The CEV Pricing Formula Page: 739
Implied Volatility in the CEV Model Page: 740
The Heston Model Page: 740
Evidence Page: 742
Chapter Summary Page: 745
Further Reading Page: 745
Problems Page: 746
25 Interest Rate and Bond Derivatives Page: 751
25.1 An Introduction To Interest Rate Derivatives Page: 751
Bond and Interest Rate Forwards Page: 752
Example 25.1 Page: 753
Options on Bonds and Rates Page: 753
Bond Options. Page: 753
Interest Rate Options. Page: 753
Equivalence of a Bond Put and an Interest Rate Call Page: 754
Example 25.2 Page: 754
Taxonomy of Interest Rate Models Page: 754
Short-Rate Models. Page: 754
Market Models. Page: 755
25.2 Interest Rate Derivatives And The Black-Scholes-Merton Approach Page: 756
An Equilibrium Equation for Bonds Page: 757
25.3 Continuous-Time Short-Rate Models Page: 760
The Rendelman-Bartter Model Page: 760
The Vasicek Model Page: 761
The Cox-Ingersoll-Ross Model Page: 762
Comparing Vasicek and CIR Page: 763
Duration and Convexity Revisited Page: 764
Example 25.3 Page: 765
25.4 Short-Rate Models And Interest Rate Trees Page: 765
An Illustrative Tree Page: 765
Zero-Coupon Bond Prices. Page: 766
Example 25.4 Page: 767
Yields and Expected Interest Rates. Page: 768
Option Pricing. Page: 768
Example 25.5 Page: 769
The Black-Derman-Toy Model Page: 769
Example 25.6 Page: 772
Hull-White Model Page: 773
Example 25.7 Page: 774
Constructing the Initial Interest Rate Grid. Page: 774
Probabilities. Page: 774
Matching Zero-Coupon Bond Prices. Page: 776
Valuation. Page: 778
Example 25.8 Page: 779
Example 25.9 Page: 779
25.5 Market Models Page: 779
The Black Model Page: 780
Example 25.10 Page: 781
LIBOR Market Model Page: 781
Chapter Summary Page: 783
Further Reading Page: 784
Problems Page: 784
Appendix 25.A Constructing The Bdt Tree Page: 787
26 Value at Risk Page: 789
26.1 Value at Risk Page: 789
Value at Risk for One Stock Page: 792
Example 26.1 Page: 793
Example 26.2 Page: 794
VaR for Two or More Stocks Page: 795
Example 26.3 Page: 795
VaR for Nonlinear Portfolios Page: 796
Delta Approximation Page: 797
Example 26.4 Page: 797
Example 26.5 Page: 798
Monte Carlo Simulation Page: 799
Example 26.6 Page: 799
Example 26.7 Page: 801
VaR for Bonds Page: 801
Example 26.8 Page: 802
Example 26.9 Page: 803
Example 26.10 Page: 804
Estimating Volatility Page: 805
Bootstrapping Return Distributions Page: 806
26.2 Issues With VaR Page: 806
Alternative Risk Measures Page: 807
Tail VaR Page: 807
Example 26.11 Page: 807
The Cost of Insurance Page: 809
Example 26.12 Page: 810
VaR and the Risk-Neutral Distribution Page: 810
Subadditive Risk Measures Page: 811
Chapter Summary Page: 812
Further Reading Page: 813
Problems Page: 813
27 Credit Risk Page: 815
27.1 Default Concepts and Terminology Page: 815
27.2 The Merton Default Model Page: 817
Default at Maturity Page: 817
Example 27.1 Page: 818
Related Models Page: 819
Example 27.2 Page: 820
27.3 Bond Ratings and Default Experience Page: 820
Rating Transitions Page: 822
Recovery Rates Page: 824
Reduced Form Bankruptcy Models Page: 824
27.4 Credit Default Swaps Page: 826
Single-Name Credit Default Swaps Page: 826
Pricing a Default Swap Page: 828
CDS Indices Page: 832
Other Credit-Linked Structures Page: 833
Total Rate of Return Swaps Page: 834
Credit-Linked Notes Page: 834
Credit Guarantees Page: 834
27.5 Tranched Structures Page: 834
Collateralized Debt Obligations Page: 836
A CDO with Independent Defaults Page: 837
A CDO with Correlated Defaults Page: 839
Synthetic CDOs Page: 839
CDO-Squareds Page: 840
Nth to default baskets Page: 842
Chapter Summary Page: 844
Further Reading Page: 846
Problems Page: 846
Appendixes Page: 849
Appendix A The Greek Alphabet Page: 851
Appendix B Continuous Compounding Page: 853
B.1 The Language of Interest Rates Page: 853
B.2 The Logarithmic and Exponential Functions Page: 853
Problems Page: 856
Appendix C Jensen’s Inequality Page: 858
C.1 Example: The Exponential Function Page: 859
C.2 Example: The Price of a Call Page: 860
C.3 Proof Of Jensen’s Inequality2 Page: 861
Problems Page: 862
Appendix D An Introduction to Visual Basic for Applications Page: 863
D.1 Calculations Without Vba Page: 863
D.2 How To Learn Vba Page: 864
D.3 Calculations With Vba Page: 864
D.4 Storing and Retrieving Variables In a Worksheet Page: 868
D.5 Using Excel Functions From Within Vba Page: 870
D.6 Checking For Conditions Page: 873
D.7 Arrays Page: 874
D.8 Iteration Page: 875
D.9 Reading And Writing Arrays Page: 877
D.10 Miscellany Page: 880
Glossary Page: 883
References Page: 897
Index Page: 915
A Page: 915
B Page: 916
C Page: 919
D Page: 923
E Page: 925
F Page: 926
G Page: 928
H Page: 929
I Page: 930
J Page: 931
K Page: 932
L Page: 932
M Page: 933
N Page: 935
O Page: 936
P Page: 937
Q Page: 940
R Page: 940
S Page: 942
T Page: 945
U Page: 946
V Page: 946
W Page: 947
X Page: 947
Y Page: 947
Z Page: 947
Description:This is the eBook of the printed book and may not include any media, website access codes, or print supplements that may come packaged with the bound book. To be financially literate in today’s market, one must have a solid understanding of derivatives concepts and instruments and the uses of those instruments in corporations. The Third Edition has an accessible mathematical presentation, and more importantly, helps readers gain intuition by linking theories and concepts together with an engaging narrative that emphasizes the core economic principles underlying the pricing and uses of derivatives.