Table Of ContentSPRINGER BRIEFS IN APPLIED SCIENCES AND
TECHNOLOGY COMPUTATIONAL INTELLIGENCE
Noorhazlinda Abd Rahman
Crowd Behavior
Simulation of
Pedestrians During
Evacuation Process
DEM-Based
Approach
123
SpringerBriefs in Applied Sciences
and Technology
Computational Intelligence
Series editor
Janusz Kacprzyk, Polish Academy of Sciences, Systems Research Institute,
Warsaw, Poland
The series “Studies in Computational Intelligence” (SCI) publishes new develop-
mentsandadvancesinthevariousareasofcomputationalintelligence—quicklyand
with a high quality. The intent is to cover the theory, applications, and design
methods of computational intelligence, as embedded in the fields of engineering,
computer science, physics and life sciences, as well as the methodologies behind
them. The series contains monographs, lecture notes and edited volumes in
computational intelligence spanning the areas of neural networks, connectionist
systems, genetic algorithms, evolutionary computation, artificial intelligence,
cellular automata, self-organizing systems, soft computing, fuzzy systems, and
hybrid intelligent systems. Of particular value to both the contributors and the
readership are the short publication timeframe and the world-wide distribution,
which enable both wide and rapid dissemination of research output.
More information about this series at http://www.springer.com/series/10618
Noorhazlinda Abd Rahman
Crowd Behavior Simulation
of Pedestrians During
Evacuation Process
DEM-Based Approach
123
Noorhazlinda AbdRahman
Schoolof Civil Engineering
Universiti Sains Malaysia
NibongTebal, Penang, Malaysia
ISSN 2191-530X ISSN 2191-5318 (electronic)
SpringerBriefs inApplied SciencesandTechnology
ISSN 2625-3704 ISSN 2625-3712 (electronic)
SpringerBriefs inComputational Intelligence
ISBN978-981-13-1845-0 ISBN978-981-13-1846-7 (eBook)
https://doi.org/10.1007/978-981-13-1846-7
LibraryofCongressControlNumber:2018949870
©TheAuthor(s),underexclusivelicensetoSpringerNatureSingaporePteLtd.2019
Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart
of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations,
recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission
orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar
methodologynowknownorhereafterdeveloped.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this
publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom
therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse.
The publisher, the authors, and the editorsare safeto assume that the adviceand informationin this
book are believed to be true and accurate at the date of publication. Neither the publisher nor the
authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor
for any errors or omissions that may have been made. The publisher remains neutral with regard to
jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations.
ThisSpringerimprintispublishedbytheregisteredcompanySpringerNatureSingaporePteLtd.
Theregisteredcompanyaddressis:152BeachRoad,#21-01/04GatewayEast,Singapore189721,
Singapore
Preface
The motivation to understand crowd behavior initiates by the desire to unveil the
essential laws of the variety of complex collective behaviors emerging from indi-
vidual interaction in a crowd. And, this desire is growing rapidly until now to the
stageofthedemandforimportantapplicationsindesigningandplanningofcrowd
safety.
Todate,severalestablishedmodelsforcrowdevacuationhavebeenproposedto
uncover the vital laws of evacuation dynamics. Interest in crowd evacuation
modelingresearchhasbeenperformedsince1970s.Itoriginatesbyconsideringthe
crowdasacontinuousflowofthemediuminwhichthekineticequationsdescribing
the evacuation process of the entire crowd were established. The characteristics of
crowd motion are described macroscopically without the consideration of behav-
ioral characteristics of the individual in the crowd. The evacuation studies have
grown since then, and the interest changed from consideration of the crowd
evacuationasawholetoconsiderationofthemicroscopicmotionoftheindividuals
in the crowd evacuation by establishing individual movement rules. Many micro-
models have been developed to accurately predict crowd motion and interpret a
variety of self-organized phenomena in crowd motion and simulate hypothetical
evacuation scenarios.
In this book, a microscopic particle-based model which is the distinct element
method(DEM)-basedmultiagentmodelwasutilizedtoformulatethecrowdmotion
andsimulatetheuncertain behaviorofevacuees andvisualize incomputer graphic
environments as an application for crowd evacuation. The aim of the simulationis
to reproduce realistic scenario of an evacuation process evolving in real time in
dynamicsvirtual3Denvironment.Thisbookiswrittenforbeginnersinthisareaof
researchandresearcherswhoareadvancedinsomeaspectsofcrowddynamicsand
want to acquire DEM approach in simulating crowd dynamics.
v
vi Preface
Chapter Organization
This book is composed offive chapters. Chapter 1 provides an introduction to the
crowd dynamics modeling and DEM-based crowd behavior simulator for evacua-
tion simulation. Chapter 2 implies two subjects which are the fundamental of the
distinct element method (DEM) and the framework of the DEM-based Crowd
Behavior Simulator for Disaster Evacuation (CBS-DE). The fundamentals of the
DEM presented in Sect. 2.2 are based on circular (two-dimension) or spherical
(three-dimension) shaped rigid particles with deformable contact formulation.
Meanwhile, the framework of the DEM-based CBS-DE is outlined in Sect. 2.3.
In this book, the development work was produced by extending the existing
CBS-DE by introducing switching action behavior model. The mathematical
modelingdescriptionoftheswitchingactionispresentedinChap.3.Chapter3also
reports on the data collections and methodology employed. The findings of the
switching action behavior study are presented in Chap. 4. Finally, in Chap. 5, the
conclusions are provided, and future works are discussed.
Nibong Tebal, Malaysia Noorhazlinda Abd Rahman
Acknowledgements
MyspecialthankstoProf.Dr.HitoshiGotohfromKyotoUniversityforgivingme
precious opportunities working at his laboratory during my doctoral study. I am
pleased to recognize Assoc. Prof. Dr. Eiji Harada from Kyoto University, for his
valuable advice, constructive criticism, and his extensive discussion around my
work. I also would like to acknowledge School of Civil Engineering, Universiti
SainsMalaysiaforfullsupportintermsofmoralandfinancialthroughoutmyPh.D.
studyandcareer.And,finally,Ialsowishtorecognizemyhusband,Zainalandmy
children: Idora, Amirul, Aleya, and Adib.
vii
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Modeling and Simulation of Human Crowd Dynamics . . . . . . . . . 1
1.2 DEM-Based Multi-agent Model. . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Switching Action Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 DEM-Based Crowd Behavior Simulator. . . . . . . . . . . . . . . . . . . . . . 5
2.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Fundamental of Distinct Element Method (DEM). . . . . . . . . . . . . 6
2.2.1 An Overview. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Computing Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.3 Contact Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . 11
2.3 Mathematical Modeling of CBS-DE . . . . . . . . . . . . . . . . . . . . . . 13
2.3.1 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.3.2 Representation of the Perception Domain . . . . . . . . . . . . . 14
2.3.3 Inter-element Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3.4 Autonomous Driving Force . . . . . . . . . . . . . . . . . . . . . . . 16
2.3.5 Self-evasive Action Force . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3.6 Model Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
3 Switching Action Behavior Model in Crowd Behavior Simulator . . . 21
3.1 The Extension of Crowd Behavior Simulator . . . . . . . . . . . . . . . . 21
3.2 Switching Action Behavior Model. . . . . . . . . . . . . . . . . . . . . . . . 22
3.2.1 Mathematical Modeling . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3 Further Application of the Model . . . . . . . . . . . . . . . . . . . . . . . . 25
3.3.1 Data-Gathering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.3.2 Modeling the Computational Domain . . . . . . . . . . . . . . . . 32
3.3.3 Computational Domain and the HBS Tool . . . . . . . . . . . . 33
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
ix
x Contents
4 Application of DEM-Based Crowd Behavior Simulator
with Switching Action Behavior Model. . . . . . . . . . . . . . . . . . . . . . . 39
4.1 Calibration and Validation Settings . . . . . . . . . . . . . . . . . . . . . . . 39
4.1.1 Simulation Domain and Condition . . . . . . . . . . . . . . . . . . 39
4.1.2 Parameter Settings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
4.1.3 Safe Level of Contact Force. . . . . . . . . . . . . . . . . . . . . . . 40
4.2 Trial Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.1 Switching Action Behavior. . . . . . . . . . . . . . . . . . . . . . . . 41
4.2.2 Contact Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3 Evacuation Process Using CBS-DE with Switching Action
Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.3.1 Simulation Domain and Setup . . . . . . . . . . . . . . . . . . . . . 46
4.3.2 Simulation of the Evacuation Process . . . . . . . . . . . . . . . . 48
4.3.3 Simulation Outcomes. . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5 Recapitulation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
5.2 Recapitulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
Reference. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
Appendix: Human Behavior Simulator (HBS) Tool.... .... ..... .... 59