Table Of ContentRESEARCHARTICLE
Comparative Serum Fatty Acid Profiles of
Captive and Free-Ranging Cheetahs (Acinonyx
jubatus) in Namibia
AdrianS.W.Tordiffe1,2,3*,BettinaWachter4,SonjaK.Heinrich4,FredReyers5,Lodewyk
J.Mienie3
1 DepartmentofParaclinicalSciences,FacultyofVeterinaryScience,UniversityofPretoria,Onderstepoort,
SouthAfrica,2 DepartmentofResearchandScientificServices,NationalZoologicalGardensofSouth
Africa,Pretoria,SouthAfrica,3 CentreforHumanMetabonomics,FacultyofNaturalSciences,North-West
a11111 University,Potchefstroom,SouthAfrica,4 DepartmentofEvolutionaryEcology,LeibnizInstituteforZooand
WildlifeResearch,Berlin,Germany,5 IdexxLaboratories(Pty)Ltd,WoodmeadWillowOfficePark,
Johannesburg,SouthAfrica
*[email protected]
Abstract
OPENACCESS
Cheetahs(Acinonyxjubatus)arehighlyspecialisedlargefelids,currentlylistedasvulnera-
Citation:TordiffeASW,WachterB,HeinrichSK,
ReyersF,MienieLJ(2016)ComparativeSerum bleontheIUCNreddatalist.Incaptivity,theyareknowntosufferfromarangeofchronic
FattyAcidProfilesofCaptiveandFree-Ranging non-infectiousdiseases.Althoughlowheterozygosityandthestressofcaptivityhavebeen
Cheetahs(Acinonyxjubatus)inNamibia.PLoS
suggestedaspossiblecausalfactors,recentstudieshavestartedtofocusonthecontribu-
ONE11(12):e0167608.doi:10.1371/journal.
tionofpotentialdietaryfactorsinthepathogenesisofthesediseases.Fattyacidsarean
pone.0167608
importantcomponentofthediet,notonlyprovidingasourceofmetabolisableenergy,but
Editor:GovindhaswamyUmapathy,Centrefor
servingotherimportantfunctionsinhormoneproduction,cellularsignallingaswellaspro-
CellularandMolecularBiology,INDIA
vidingstructuralcomponentsinbiologicalmembranes.Todevelopabetterunderstanding
Received:June10,2016
oflipidmetabolismincheetahs,wecomparedthetotalserumfattyacidprofilesof35captive
Accepted:October17,2016
cheetahstothoseof43free-rangingindividualsinNamibiausinggaschromatography-
Published:December19,2016 massspectrometry.Theunsaturatedfattyacidconcentrationsdifferedmostremarkably
Copyright:©2016Tordiffeetal.Thisisanopen betweenthegroups,withallofthepolyunsaturatedandmonounsaturatedfattyacids,
accessarticledistributedunderthetermsofthe exceptarachidonicacidandhypogeicacid,detectedatsignificantlylowerconcentrationsin
CreativeCommonsAttributionLicense,which
theserumofthefree-ranginganimals.Theinfluenceofageandsexontheindividualfatty
permitsunrestricteduse,distribution,and
acidconcentrationswaslessnotable.Thisstudyrepresentsthefirstevaluationoftheserum
reproductioninanymedium,providedtheoriginal
authorandsourcearecredited. fattyacidsoffree-rangingcheetahs,providingcriticalinformationonthenormalfattyacid
profilesoffree-living,healthyindividualsofthisspecies.Theresultsraiseseveralimportant
DataAvailabilityStatement:Allcheetahserum
fattyaciddataareavailablefromUniversityof questionsaboutthepotentialimpactofdietaryfattyacidcompositiononthehealthofchee-
Pretoria’sresearchdatarepository(http://hdl. tahsincaptivity.
handle.net/2263/58345).
Funding:FundingwasreceivedbyBWandSKH
fromtheMesserliFoundation(Switzerland)and
LeibnizInstituteforZooandWildlifeResearch
(Germany)forthesamplingofthefree-ranging
cheetahs.Otheraspectsofthestudywere Introduction
supportedbyNorthWestUniversity,theAfriCat
FoundationandtheNationalZoologicalGardensof Cheetahs(Acinonyxjubatus)arekeptinmanyfacilitiesworldwide.Despiteobviousimprove-
SouthAfrica.FRisemployedandreceivesasalary mentsinhusbandrysincecheetahswerefirstkeptincaptivity,theystillsufferfromarangeof
PLOSONE|DOI:10.1371/journal.pone.0167608 December19,2016 1/14
SerumFattyAcidProfilesinCheetahs
fromIdexxLaboratories(Pty)Ltd,acommercial unusualdiseasesnottypicallyseeninotherlargecaptivefelids.Theseincludeglomerulosclero-
laboratory.Allfundersprovidedsupportintheform sis[1–4],renalamyloidosis[4],lympho-plasmacyticgastritis[2,5,6],veno-occlusivedisease
ofsalariesand/orresearchmaterialsforauthors
[2,7],splenicmyelolipomas,cardiacfibrosis[2,4],adrenalcorticalhyperplasia[1,2,4,8]with
(ASWT,BW,SKH,FRandLJM),butdidnothave
lymphocyticdepletionofthespleen[2],pancreaticatrophy[2]aswellasseveralill-defineddis-
anyroleinthestudydesign,datacollectionand
ordersoftheneurologicalsystem[2,9].Someofthesechronicdegenerativediseaseseventually
analysis,decisiontopublish,orpreparationofthe
manuscript.Thespecificrolesoftheseauthorsare affectthemajorityofcheetahsincaptivityandareconsideredtobetheprimarycauseofmor-
specifiedinthe‘authorcontribution’section. bidityandmortalityinadultanimals[2,10].Incontrast,theincidenceofsimilarconditionsin
free-rangingcheetahswasfoundtobeverylow[10,11].Althoughlowheterozygosityandthe
CompetingInterests:Oneoftheauthors(FR)is
currentlyemployedbyIdexxLaboratories(Pty) stressofcaptivityhavebeensuggestedascausalfactors[8,12],recentstudieshavestartedto
Ltd,acommercialveterinarylaboratory.Besides focusonthecontributionofpotentialdietaryfactorsinthepathogenesisofthesediseases[13–
providingsupportintheformasalary,Idexx 15]
Laboratoriesplayednoroleinanyaspectofthis
Thereisincreasingevidenceofthecriticalroleofdietaryandcirculatingfattyacids(FA)in
studyandthisdoesnotalterouradherenceto
healthanddiseaseinvariousspecies[16–19].Besidesprovidingavaluablesourceofenergy,
PLOSONEpoliciesonsharingdataandmaterials.
Theauthorsfurthermoredeclarethatnocompeting FAsalsoperformothervitalfunctionsinthebody,includinghormoneproduction,cellular
interestexist. signallingaswellasprovidingstructuralcomponentsofbiologicalmembranes.Long-chain
polyunsaturatedfattyacids(PUFAs),with20carbonatoms,aretheprecursorsofeicosanoids,
suchasprostaglandins,leukotrienesandthromboxanes,whichhaveawiderangeofregula-
tory,autocrineandparacrineeffects.PUFAswith20to22carbonatomsarealsotheprecur-
sorsofautacoids,includingresolvins,lipoxinsandneuroprotectins,whichareinvolvedinthe
activeresolutionofinflammation[20].Furthermore,FAsareknowntoplayaroleasmodula-
torsofgenetranscription[21,22].
Giventheirbiologicalimportance,dietaryFAsarelikelytoplayasignificantroleinthe
healthofcaptivecheetahs.SerumFAshavebeenshowntoprovideagoodapproximationof
dietaryintake[23–26].Todatefewstudieshavefocusedonthemetabolismoflipidsinthis
speciesandnoclearlinkshavebeenestablishedbetweentheFAintakeandthediseasessuf-
feredbycheetahsincaptivity.SuspectedessentialFAdeficiencieshavebeendocumentedina
fewcheetahcasereports.[27,28].Currently,serumreferencevaluesexistforphospholipid
fractionsofaselectednumberofFAsin28captivecheetahsfromtwofacilitiesintheUnited
States[29].However,thephospholipidFAfractiongenerallymakesuponlyaround30%ofthe
totalserumorplasmaFAsandisnotnecessarilyreflectiveoftotalserumorplasmaFAcompo-
sition[26]Furthermore,thesecheetahswerefedacommercialdietthatisonlyreadilyavail-
ableinNorthAmerica.Giventherangeofdietsfedtocaptivecheetahs,thesevaluesare
unlikelytoprovidereliableserumreferencevaluesforcheetahsinothercaptivefacilities.
Wehypothesizedthatthedifferencesindiet,feedingintervalandenergyexpenditure
betweencaptiveandfree-rangingcheetahsresultindifferencesintheirserumFAprofiles.
CaptivecheetahsinsouthernAfricaareoftenfeddietsthatconsistprimarilyofleanmuscle
meatfromcattle,horsesordonkeys,supplementedwithamultivitamin/mineralpowder.Most
facilitiesadheretoguidelinesthatrecommendfeedingmealsofbetween1.2and1.4kgperday
forsixdaysoftheweek[30].Incontrast,thefree-rangingcheetahshavebeenshowntocon-
sumeavarietyofgamespecies,consistingprimarilyofsmalltomediumsizedantelopeand
smallerquantitiesofwarthogs,haresandbirds[31].Free-rangingcheetahsalsogenerallyfeed
lessfrequently,withsuccessfulkillsonlybeingrecordedevery2.6to7days[32,33].Thehigh
proportionofantelopeinthefree-rangingcheetahdietisexpectedtoresultinalowerpropor-
tionalintakeofunsaturatedfat,sincetheunsaturatedtosaturatedfatratioinruminanttissues
issubstantiallylowerthaninmonogastricanimals.Ruminantmuscletissuetypicallyhasan
unsaturatedtosaturatedFAratioofbetween0.11and0.15,whiletheratioindonkeymeatis
around1.45[34–36].Thespecificcomponentsandorgansofpreyanimalsconsumedbyfree-
rangingcheetahsshouldalsoleadtolowerserumPUFAtoSFAratios,astheintra-abdominal
fatdepots,frequentlyconsumedbyfree-rangingcheetahs,alsohaveahigherproportionof
PLOSONE|DOI:10.1371/journal.pone.0167608 December19,2016 2/14
SerumFattyAcidProfilesinCheetahs
saturatedfatthaneitherintramuscularorsubcutaneousadiposetissue[37].MostAfrican
ungulateshavesubstantialintra-abdominalfatreserves,including,mesenteric,omental,peri-
renalandchannelfat.Consumptionofwholepreycarcassesisthereforelikelytoresultinan
increasedintakeofdietaryfatcomparedtocaptivedietsthataremostlylimitedtomusclemeat
andbone[38].
Theincreasedproportionalintakeofdietaryfat,decreaseinfeedingfrequencyand
increasedphysicalactivityinfree-rangingcomparedtocaptivecheetahsareallpredictedto
resultinenhancedmitochondrialFAoxidationthroughtheloweringofcirculatingglucose
concentrationsandinsulin:glucagonratios[39].Duringfasting/refeedingcyclesandincreased
levelsofexercise,tissuePUFAconcentrationshavebeenshowntodepleterapidlyinboth
humansandrats[40,41].ThesestudiesshowthatmostPUFAs,includingα-linolenicacid
(ALA)andlinoleicacid(LA),arepreferentiallyoxidizedinperiodsofexerciseorfasting.Dur-
ingrefeeding,SFAsandmonounsaturatedfattyacids(MUFAs),suchaspalmiticacidand
oleicacid,arealsomorerapidlyreplacedthananyofthePUFAs.Similarly,theconcentrations
ofmostplasmaPUFAsandMUFAshavebeenshowntobesignificantlylowerinratsfeda
highfatketogenicdietthanincontrols[42].ThepredictedincreaseinFAoxidationinfree-
rangingcheetahsisthereforelikelytoalsoskewtheirserumFAprofilestowardlowerpropor-
tionalserumconcentrationsofPUFAsandMUFAsrelativetoSFA.
InthisstudywecomparedthetotalserumFAprofiles(combinedfreeandboundFAs)of
captivecheetahsfedameat-baseddiettothoseoffree-rangingcheetahsfeedingonnatural
prey.Ouraimwastoinvestigateourhypothesisthatthedifferentfeedinghabitsoffree-rang-
ingandcaptivecheetahsleadtodifferentserumFAprofilesandtotesttwopredictionsderived
fromthishypothesis.Weexpectedthatfree-rangingcheetahshave;1)lowerPUFA:SFAratios
and2)lowerMUFA:SFAratiosthanthecaptivecheetahs.Theprofilesobtainedalsoprovide
valuablebaselineinformationwithwhichtoevaluatesuspectedFAdeficienciesincaptive
cheetahsandadvanceourunderstandingoflipidmetabolismanditsimpactonthehealthof
thisspecies.
MaterialsandMethods
Ethicalandpermitconsiderations
TheprojectwasapprovedbytheNationalZoologicalGardensofSouthAfrica’sResearchand
EthicsCommittee(Projectno.P11/07).Research/collectingpermits(1846/2013)and(1689/
2012)wereobtainedfromtheNamibianMinistryofEnvironmentandTourismandthesam-
pleswereimportedintoSouthAfricawiththeCITESexport(no.0042838)andimport(no.
137670)permits,aswellasaveterinaryimportpermit(no.13/1/1/30/2/10/6-2013/11/002397).
OnceinSouthAfrica,thesamplesweretransportedandstoredwiththenationalThreatened
orProtectedSpecies(TOPS)ordinarypermit(no.05238).
Samples
Bloodsampleswerecollectedfrom35adultcaptivecheetahs(14femalesand21males)during
theirannualhealthassessmentsinJuly2013attheAfriCatFoundationnearOtjiwarongoin
Namibia(Table1).Thecheetahswerefastedfor24to36hoursandimmobilizedviaremote
injectiondart(Daninject,Denmark)with0.03mg/kgmedetomidinehydrochloride(Medeto-
midine20mg/ml,KyronLaboratories,SouthAfrica)incombinationwith1.2mg/kgzolaze-
pam/teletamine(Zoletil1,Virbac,SouthAfrica).Theseanimalswerefedadietconsisting
mostlyofmusclemeatfromevisceratedandexsanguinateddonkeys,supplementedwitha
multivitaminandmineralpowder(PredatorPowder1,Healthtech,SouthAfrica).
PLOSONE|DOI:10.1371/journal.pone.0167608 December19,2016 3/14
SerumFattyAcidProfilesinCheetahs
Table1. Numbersofcheetahsinthecategoriesage,sexandcaptivitystatus.
Sex Agecategory Captive Free-ranging Total
Males Sub-adults 0 14 14
Youngadults 6 9 15
Matureadults 8 11 19
Oldadults 7 0 7
Total 21 34 55
Females Sub-adults 0 2 2
Youngadults 4 3 7
Matureadults 3 4 7
Oldadults 7 0 7
Total 14 9 23
doi:10.1371/journal.pone.0167608.t001
SampleswerealsocollectedbetweenJuly2012andMay2013from43free-rangingsub-
adultandadultcheetahs(34malesand9females)livingoncommercialfarmlandintheKho-
masandOmahekedistrictsincentralNamibia.Theywerecapturedinnon-baitedboxtraps,
placedatknowncheetahmarkingtrees.Oncesecuredintheboxtraps,theywereimmobilised
byremoteintramuscularinjectionusingacombinationof0.06mg/kgmedetomidinehydro-
chloride(Medetomidine10mg/ml,KyronLaboratories,SouthAfrica)and3.2mg/kgketamine
(Ketamine1G,KyronLaboratories,SouthAfrica).Theagesofthefree-rangingcheetahswere
estimatedbyusingthekeyforbodysizeestablishedby[43],usingshoulderheight,appearance
ofthemaneandphysicallesionssuchaselbowcalluses,scarsaswellasdentalwear.
Within15to35minutesofimmobilisation,bloodwascollectedasepticallybydifferent
operators,usingslightlydifferentmethods.Inthecaptiveanimals,bloodwascollectedfroma
jugularveinwitha20mlsyringeand18gaugeneedleandthentransferredinto6mlBDVacu-
tainer1tubes(Becton,DickinsonandCompany,SouthAfrica),whileinthefree-rangingchee-
tahsthebloodwascollectedfromthecephalicveindirectlyintothe6mlBDVacutainer1tubes
througha21gaugeVacutainer1needle.Allthebloodsampleswereallowedtoclotoniceina
coolerbox.Sampleswerecentrifugedwithin4hoursateither1500gfor10minutes(captive
cheetahs)orwithin4to12hoursat400gfor15minutes(free-rangingcheetahs),afterwhich
theserumwaspipettedoffandimmediatelyfrozenat-20˚C.Thesampleswerethentransported
ondryicetothelaboratoryinNovember2013andkeptat-80˚CuntilanalysisinJanuary2014.
Afterthesamplecollectionandcompletionofthehealthassessments,thecaptivecheetahs
wereplacedinwoodenrecoverycratesand0.075mg/kgatipamezole(Antisedan1,Zoetis,
SouthAfrica)wasadministeredintramuscularly,whereasthefree-rangingcheetahswere
placedinapaddedboxand0.11mg/kgatipamezole(Antisedan1,Pfizer,SouthAfrica)was
administeredintramuscularly.Oncetheanimalshadrecoveredsufficientlyfromtheeffectsof
theanaesthesiainthecratesorpaddedboxes,respectively,thecaptivecheetahswerereleased
backintotheirenclosuresandmonitoredintermittentlyfor24hours,whereasthefree-ranging
cheetahswerereleasedatthespotofcaptureandmonitoreduntiltheywalkedawayandoutof
sight.Mostofthefree-rangingcheetahswerecollaredwithaGPScollarandtheirmovements
afterreleasewereconfirmedtobenormal.Inallcasestheyrecoveredwithoutincident.
Samplepreparationandreagents
Afterthawingthesamplesonice,theyweresubjecttobothacidicandalkalinehydrolysisand
thenextractedintohexaneasdescribedby[44]fortheanalysisofverylong-chainfattyacids
(VLCFA).Theprotocolwas,however,modifiedfortheadditionalquantificationoflong-chain
PLOSONE|DOI:10.1371/journal.pone.0167608 December19,2016 4/14
SerumFattyAcidProfilesinCheetahs
fattyacids(LCFA)byaddinganadditionalstableisotopestandard(eicosanoicacid-d )tothe
39
internalstandardsolutionataconcentrationof50μmol/l.Derivatisationwasachievedwith
N-methyl-N-(tert-butyldimethylsilyl)trifluoroacetamide(MTBSTFA)asdescribedbythe
sameauthors.
Eicosanoic-d acidwasobtainedfromSigma-AldrichPtyLTD(KemptonPark,South
39
Africa).TheVLCFAstableisotopestandards:C26:0-d ,C24:0-d ,C22:0-d ,pristanicacid-d
4 4 4 3
andphytanicacid-d wereobtainedfromDr.HermantenBrink(VUMedicalCentre,Amster-
3
dam,TheNetherlands)(http://www.vumc.nl/metabool/index.html).Otherreagentswere
obtainedfromLarodan(KarolinskaInstitutetSciencePark,Retziusva¨g8,SE-17165Solna,
Sweden),MerckPtyLTD(Modderfontein,SouthAfrica)andRegisTechnologies,Inc(Morton
Grove,IL,USA).
Gaschromatography-massspectrometry
TheGC-MSanalysisoftheserumLCFAsandVLCFAs,wasconductedonaHewlettPackard
HP6890seriesgaschromatography(GC)systemwithanAgilent5973NMassselectivedetec-
torfittedwithanelectronionization(EI)ionsource,anAgilentTechnologies7683autosam-
pleranda7683Binjector.TheGCsystemwasfittedwithaPhenomenexGCFocusLinerliner
forHP,split/splitless,w/wool,singletaper,4mmIDx78.5mmLx6.3mmOD(partnumber
AG04680)andaCPSil19capillarycolumn(25m×0.25mm×0.20μm;Varian).Theinjection
systemwasusedinthesplitlessmodeandkeptat300˚C.Theinterfacetothemassselective
detectorwassetat290˚C.
EachsamplewasinjectedinitiallyforthedetectionofVLCFAsintheselected-ionmonitor-
ing(SIM)modeandasecondtimeforthedetectionoftheLCFAsinscanmode.Forthedetec-
tionofVLCFAs,theGCseparationoftheanalyteswasachievedusingthefollowingcolumn
temperatureprogram:initialtemperature60˚Cfor1min,increaseto240˚Catarateof30˚C/
min,furtherincreaseto270˚Catarateof10˚C/min,finalincreaseto300˚Cat4˚C/minand5
minisothermalatthelatterlevel.Themassspectrometerwasoperatedat70eVintheSIM
mode.Adwelltimeof100msandarelativeEMvoltageof400Vhigherthanthatinthescan-
ningmodewerechosenforeachionmonitored.
ForthedetectionofLCFAs,theGCseparationoftheanalyteswasachievedusingthefol-
lowingcolumntemperatureprogram:initialtemperature50˚Cfor1min,increaseto270˚Cat
arateof30˚C/min,furtherincreaseto320˚Catarateof4˚C/minand5minisothermalatthe
latterlevel.Themassspectrometerwasoperatedat70eVintheSCANmode(scanrangeof
50–650amu).Heliumwasusedasthecarriergasataconstantflowrateof1.0ml/minforboth
VLCFAanalysisandtotalFAanalysis.MSconditionswereasfollows:EImode,ionsource
temperature,200˚C,multipliervoltage,1.182V,solventdelay5min.
TheFAs,werequantifiedwithAgilentMSDChemStationE02.00software.Alinearregres-
sionwasusedtocalibratetheidentificationandquantificationoftheFAs.Thelinearity,lower
detectionlimitandmaximumdetectionlimitweredeterminedforalltheFAs.Aqualitycon-
trol(QC)standardmixtureofhumancontrolserumwasrunwitheachbatch.Thehumancon-
trolwaspreparedbyaliquoting100μlportionsofanormalrangepooledserumintoscrew-
capvials.ThemeanandstandarddeviationforeachQCsamplewascalculatedwithamini-
mumof20between-runvalues.Controlvaluesthatfellwithinstandarddeviationsofthemean
wereconsideredacceptable.
Statisticalanalysis
Three-wayANOVAswereconductedtocomparethemainandinteractiveeffectsofage,sex
andcaptivityoneachoftheFAconcentrations.Cheetahswereclassifiedassub-adults(<2
PLOSONE|DOI:10.1371/journal.pone.0167608 December19,2016 5/14
SerumFattyAcidProfilesinCheetahs
yearsofage),youngadults(2to4yearsofage),matureadults(5to9yearsofage)oroldchee-
tahs(>10yearsofage).DatawithineachsubsetwastestedfornormalityusingtheShapiro-
Wilk’stest(p>0.05).Theconcentrationsofpalmiticacid,stearicacid,nonadecanoicacic,ara-
chidicacid,behenicacid,lignocericacid,pristanicacid,phytanicacid,totalSFA,LA,γ-linone-
nicacid,arachidonicacid(AA),eicosadienoicacid,eicosapentanoicacid,totalω-6,total
PUFAandtotalFAconcentrationswerenormallyornear-normallydistributed.Theconcen-
trationsofmyristicacid,heptadecanoicacid,ceroticacid,hypogeicacid,palmitoleicacid,oleic
acid,totalMUFA,SFA:PUFA,ω-6:ω-3andthedesaturaseindexhadtobelogarithmically
transformedtomeetnormalityrequirementsfortheANOVAanalyses.Allanalyseswereper-
formedwithSPSSversion23.0forWindows(IBMCorporation).Duetothecomparisonof
multipleFAs,aBonferroniadjustmentwasappliedtothemaineffectsintheANOVAs,taking
intoaccountthenumberofanalyses.Thisresultedinanadjustedstatisticalsignificancelevel
of0.0018(0.05/28).Forthetwo-wayandthree-wayinteractions,thestatisticalsignificancewas
keptat0.05.AllsimplepairwisecomparisonswererunwithaBonferroniadjustment.
Results
AnalysisofthemaineffectofcaptivitystatusonthevariousFAconcentrationsintheANO-
VAsresultedinanumberofsignificantdifferences,assummarisedinTable2.Alloftheindi-
vidualserumMUFAsandPUFAsaswellasthetotalMUFAandPUFAconcentrations
differedbetweenthefree-rangingandcaptivecheetahs(p<0.0005),withfree-rangingchee-
tahshavinglowervaluesformostFAs.Free-rangingcheetahsalsohadlowertotalFAconcen-
trationsthanthecaptivecheetahs(p=0.001),whereastotalSFAconcentrationsdidnotdiffer.
BoththeSFA:PUFAandSFA:MUFAratioswereonaveragemorethanthree-foldhigherin
free-rangingcheetahsthanincaptivecheetahs(p<0.0005).Eicosapentaenoicacidwasthe
onlyω-3PUFAdetectedinserumofbothfree-rangingandcaptivecheetahs.Otherω-3
PUFAs,suchasALA,docosahexaenoicacid(DHA)andeicosatetraenoicacid,wereeither
absentorbelowthelimitsofdetection.Whiletotalω-3andω-6concentrationswerelowerin
thefree-rangingcheetahs(p<0.0005),theω-6:ω-3ratiowasnotsignificantlydifferent
(p=0.198).
Otherthanforcaptivitystatus,maineffectsforagecategoryweresignificantforγ-linolenic
acidF =3.92,p=0.01(TableC2inS1File),eicosadienoicacidF =5.82,p=0.001
3,64 3,64
(TableC5inS1File),andarachidonicacidF =3.10,p=0.03(TableC3inS1File).Theγ-
3,66
linolenicacidconcentrationswerehigherincaptiveyoungadultcheetahs(131.48μmol/L)
thanincaptivematureadults(58.94μmol/L,p<0.0005)andcaptiveoldadults(74.9μmol/L,
p=0.001),buttheγ-linolenicacidconcentrationsmeasuredinthevariousagecategoriesof
free-rangingcheetahsdidnotdiffer.Arachidonicacidconcentrationswerelowerinsub-adult
free-rangingcheetahs(39.87μmol/L)thaninmatureadultfree-rangingcheetahs(59.50μmol/
L,p=0.008),butnotsignificantlydifferentfromthoseofyoungadultfree-rangingcheetahs
(51.72μmol/L).Arachidonicacidconcentrationsdidnotdifferbetweenanyofthecaptive
cheetahagecategories.Eisosadienoicacidconcentrationsdecreasedwithageinthecaptive
cheetahswithmeanvaluesof13.62μmol/Linyoungadults,10.16μmol/Linmatureadults
and9.34μmol/Linoldadults.Theconcentrationsdifferedonlybetweenyoungandmature
adults(p=0.003)aswellasyoungandoldadults(p<0.0005).Incontrast,meaneicosadienoic
acidconcentrationsdidnotdifferwithageinthefree-rangingcheetahs.
IntheANOVAstherewerenosignificantthree-wayinteractions(age,sexandcaptivitysta-
tus)foranyoftheserumFAsmeasured(TablesA1–D4inS1File).Therewasonlyonesignifi-
canttwo-waysex(cid:3)captivitystatusinteractionwhichwasforstearicacidF =5.09,p=0.03
1,66
(TableA4inS1File).Thesimplemaineffectofcaptivitystatusonstearicacidconcentrations
PLOSONE|DOI:10.1371/journal.pone.0167608 December19,2016 6/14
SerumFattyAcidProfilesinCheetahs
Table2. Totalserumfattyacidconcentrationsasmeansandstandarddeviations(SD)inμmol/Loffree-ranging(n=43)andcaptive(n=35)chee-
tahs. Theresultsofmaineffectofcaptivitystatusinthethree-wayANOVAsareshown,comparingtheserumfattyacidconcentrationsoffree-rangingand
captivecheetahs.ForstatisticaldetailsseesupplementarytablesA1-D4inS1File.SFA=saturatedfattyacids,MUFA=monounsaturatedfattyacids,
PUFA=polyunsaturatedfattyacids.Desaturaseindex=stearicacid/oleicacid.ND=notdetected.
Fattyacid(FA) Abbreviatedchemicalstructure Free-ranging Captive F p-value
Mean(SD) Mean(SD)
Myristicacid C14:0 32.88(17.20) 31.16(16.19) 0.046 0.83
Palmiticacid C16:0 1385.2(366.0) 1182.3(242.7) 3.387 0.07
Heptadecanoicacid C17:0 84.67(42.8) 45.10(9.9) 21.020 <0.0005*
Stearicacid C18:0 2127.4(520.3) 2028.9(451.4) 0.121 0.729
Nonadecanoicacid C19:0 0.03(0.02) 0.05(0.02) 3.147 0.081
Arachidicacid C20:0 30.93(7.5) 41.05(9.1) 17.106 <0.0005*
Behenicacid C22:0 40.41(12.6) 29.77(4.7) 12.928 0.001*
Lignocericacid C24:0 56.48(16.8) 36.48(6.2) 30.367 <0.0005*
Ceroticacid C26:0 0.83(0.4) 0.91(0.4) 2.582 0.113
Pristanicacid 0.71(0.8) 0.089(0.05) 6.883 0.011
Phytanicacid 13.41(8.9) 2.30(0.7) 23.746 <0.0005*
TotalSFA 3727(832) 3398(676) 1.464 0.231
Hypogeicacid C16:1ω9 24.14(16.8) 5.87(6.7) 20.632 <0.0005*
Palmitoleicacid C16:1ω7 18.35(17.4) 46.97(19.3) 26.443 <0.0005*
Oleicacid C18:1ω9 178.67(213.3) 821.44(362.4) 59.628 <0.0005*
TotalMUFA 221.1(214.9) 874.3(374.7) 55.081 <0.0005*
Linoleicacid C18:2ω6 294.2(125.9) 1049.79(329.3) 107.985 <0.0005*
γ-Linolenicacid C18:3ω6 8.83(6.6) 86.58(58.1) 52.124 <0.0005*
Eicosadienoicacid C20:2ω6 0.83(0.9) 10.90(3.4) 247.177 <0.0005*
Dihomo-γ-linolenicacid C20:3ω6 ND ND - -
Arachidonicacid C20:4ω6 52.19(17.8) 35.91(8.7) 19.845 <0.0005*
Totalω6 357(137) 1183(355) 114.912 <0.0005*
α-Linolenicacid C18:3ω3 ND ND - -
Eicosatetraenoicacid C20:4ω3 ND ND - -
Eicosapentaenoicacid C20:5ω3 5.54(4.7) 14.69(4.6) 36.860 <0.0005*
Docosahexaenoicacid C22:6ω3 ND ND - -
Totalω3 5.54(4.7) 14.69(4.6) 36.860 <0.0005*
TotalPUFA 363(140) 1183(355) 114.695 <0.0005*
ω6:ω3 281(462) 84.0(24.2) 1.692 0.198
SFA:PUFA 11.15(2.9) 3.01(0.8) 190.34 <0.0005*
SFA:MUFA 22.07(6.93) 5.78(5.1) 106.66 <0.0005*
Desaturaseindex 0.09(0.10) 0.41(0.17) 62.181 <0.0005*
TotalFA 4314(984) 5470(1253) 13.062 0.001*
*p<0.0018,Bonferroniadjustment0.05/28tests.
doi:10.1371/journal.pone.0167608.t002
wasneithersignificantformales(F =2.09,p=0.15),norforfemales(F =1.82,p=0.18),
1,66 1,66
butstearicacidconcentrationstendedtobelowerinfree-rangingfemales(1843.42μmol/L)
thaninfree-rangingmales(2198.43μmol/L,F =3.90,p=0.053,(datanotshown).
1,66
Significanttwo-waycaptivitystatus(cid:3)ageinteractionsweredetectedforoleicacidF =
1,66
5.75,p=0.019(TableB3inS1File),γ-linolenicacidF =9.72,p=0.003(TableC2inS1
1,64
File),eicosadienoicacidF =6.80,p=0.011(TableC5inS1File),SFA:MUFAF =4.89,
1,64 1,66
p=0.03(TableD1inS1File)andthedesaturaseindexF =5.31,p=0.024(TableD3inS1
1,66
File).Oleicacidconcentrations,eicosadienoicacidconcentrationsandthedesaturaseindexes
PLOSONE|DOI:10.1371/journal.pone.0167608 December19,2016 7/14
SerumFattyAcidProfilesinCheetahs
didnotdifferbetweenthedifferentagecategoriesofeithercaptiveorfree-rangingcheetahs
(datanotshown).
Discussion
Inthisstudy,thetotalserumFAprofilesoffree-rangingcheetahscontrastedmarkedlywith
thoseinthecaptivecheetahs,reflectingsignificantdifferencesindietaryFAcompositionand/
orFAmetabolism.Differencesindietaryfatintake,dietaryFAcomposition,energyexpendi-
ture,andfeedingfrequencycouldallpotentiallycontributetothesecontrastinglipidprofiles.
TheunsaturatedFAconcentrationsdifferedmostremarkablybetweenthegroups,withmost
ofthePUFAsandMUFAshavinglowerserumconcentrationsinfree-rangingcheetahsand
onlyarachidonicacidandhypogeicacidhavinglowerserumconcentrationincaptivechee-
tahs.Aspredicted,boththeSFA:PUFAandSFA:MUFAratiosweresignificantlyhigherinthe
free-ranginganimals.TheinfluenceofageandsexontheindividualFAconcentrationswas
lessnotable.
Thehigherpalmitoleicacidandoleicacidserumconcentrationsincaptivecheetahsmaybe
areflectionofdietaryintakeoftheseFAs,becausethesetwoMUFAsmakeupapproximately
34%oftheFAsindonkeymeat[35],whereastheircombinedproportionofmuscularFAsin
mostgamespeciesisbelow20%[45].However,boththeseMUFAsarealsosynthesisedinthe
liverbystearoylcoenzyme-Adesaturase(SCD)withpalmiticandstearicacidassubstrates.
TheregulationofSCDhasbeenshowntohaveconsiderablephysiologicimportance,and
alterationsinSCDexpressionandregulationhavebeenimplicatedinseveralmetabolicdis-
easesinhumansandlaboratorymice[46].TheplasmaratioofC18:0(stearicacid)toC18:1
(oleicacid)hasbeenusedasa“desaturaseindex”tomeasureSCDactivityinhumans[47].The
desaturaseindexwasmorethanfour-foldhigherinthecaptivecheetahsthaninthefree-rang-
ingindividuals.InSCD1knockoutmice,tissuelevelsofoleicandpalmitoleicacidarereduced,
whilestearicacidandpalmiticacidareincreased.Otherthangeneticmutations,elevatedcir-
culatinginsulinandglucoselevelsareknowntoincreaseSCDexpressionintheliver[48].
Seruminsulinandglucoseconcentrationshavenotbeenadequatelyevaluatedinnon-anaes-
thetisedcaptiveorfree-rangingcheetahs,butthehigherdesaturaseindexincaptivecheetahsis
consistentwithourhypothesisthattheseanimalspotentiallyhavehighercirculatingglucose
andinsulinlevelsduetomoreregularfeedingandahigherdietaryproteinintake.
ThedifferencesinserumPUFAconcentrationsbetweenfree-rangingandcaptivecheetahs
arealsoconsistentwithourhypothesis,becausetheseunsaturatedFAsoccuratlowerserum
concentrationsinthefree-rangingthanincaptivecheetahs,primarilyduetolowerdietary
intake.WesuggestthatthepreferentialoxidationofPUFAsinperiodsofincreasedexerciseor
fastinginthefree-rangingindividualscouldalsopotentiallycontributetowardsthesediffer-
ences.ArachidonicacidwastheonlyPUFAforwhichconcentrationswerehigherinthefree-
rangingcheetahs.Thisagainmayreflectdifferencesindietaryintake,asAAmakesupalarger
proportion(7.63%to9.3%)oftheintramuscularFAsinwildgamespeciessuchasthespring-
bok(Antidorcasmarsupialis)[49]thanindonkeymusclemeat(1.65%to2.09%)[36].Agreater
consumptionoforganmeatbyfree-rangingcomparedtocaptivecheetahsmayalsoresultina
higherproportionalintakeofAA[50].ArachidonicacidcanbesynthesisedfromLA,however,
similartodomesticcats,theactivityoftheΔ-6desaturaseenzyme,responsibleforcatalysing
thefirststepofthispathway,islikelytobeverylowincheetahs[29,51].PUFAsareparticularly
pronetooxidativerancidityandtheperoxidationofAAinstoredcarcassmeatcouldalso
potentiallycontributetolowerserumconcentrationsincaptivecheetahs.Domesticcats,feda
diethighinLA,withadequatelevelsofAAandantioxidants,werefoundtohavesignificantly
lowerplasmaAAlevelsatday140ofthetrial,thancatsfedadietcontaininglowerlevelsofLA
PLOSONE|DOI:10.1371/journal.pone.0167608 December19,2016 8/14
SerumFattyAcidProfilesinCheetahs
[52].Generallythecarcassmeatisnotstoredfor140daysatmostcaptivecheetahfacilities,but
itispossiblethatsomeperoxidationofthelong-chainFAstakesplaceinstorageasnoantioxi-
dantsareaddedtothemeatuntiljustbeforeitisfedtotheanimals.
Theserumconcentrationsofω-3FAswerelowinboththecaptiveandfree-rangingchee-
tahs,makinguponly0.13%and0.27%ofthetotalserumFAs,respectively(calculatedfrom
Table2).Omega-3FAs,suchasALA,DHAandeicosatetraenoicacid,reportedinserumor
plasmaofcaptivecheetahs[29]anddomesticcats[53],wereeitherabsentorbelowthelimits
ofdetection.ThereasonfortheabsenceofDHAintheplasmaofbothcaptiveandfree-rang-
ingcheetahsispotentiallyshowninanstudybyPawloskyetalinwhichtheydemonstrated
thatdeuteriumlabelledLAandALAadministeredtocatsresultsintheirliversproducingdeu-
teriumlabelledlong-chainedFAsuptoadrenicacid(22:4ω-6)anddocosapentaenoicacid
(22:5ω-3),butnotDHA[54].DeuteriumlabelledDHAandseveralotherlong-chainedFAs
were,however,detectedinthebraintissueofthecats,suggestingthatthedocosapentaenoic
acidistransportedfromthelivertothebrain,andprobablytheretina,whereitisthenfurther
metabolisedtoDHAandwhereitiscriticallyrequiredfornormalfunction[55].Theverylow
concentrationsorabsenceoftheseessentialω-3FAsintheserumofhealthyfree-livingchee-
tahsisthusaclearindicationthattheircirculatingconcentrationsshouldnotbeusedtoevalu-
atedietarydeficienciesinthisspecies.
Heptadecanoicacid,alsoknownasmargaricacid,isaSFAwithanunevennumberofcar-
bonatomsandisnormallyfoundatlowconcentrationsintheadiposetissueandmilkfatof
ruminants.ThemeanserumconcentrationofthisSFAwashigherinfree-rangingcompared
tocaptivecheetahs.Recently,theimportanceofthisFAwasdemonstratedinanothercaptive
hypercarnivore,thebottlenosedolphin(Tursiops truncates)[56].Lowserumheptadecanoic
acidconcentrationswereassociatedwithelevatedserumconcentrationsofknownmarkersof
metabolicsyndrome,includingserumferritin,glucose,insulinandtriglyceridesinthedol-
phins.Achangeinthefishspeciesprovidedinthedolphindiet,withhigherheptadecanoic
acidcontent,resultedinanormalizationofthesemarkers.TwootherFAsthatcorrelatednega-
tivelywiththemarkersofmetabolicsyndromeindolphinswereAAandbehenicacid.Bothof
theseFAswerealsodetectedatsignificantlylowerserumconcentrationsincaptivecheetahs.
Captivecheetahsarenotknowntosufferfrommetabolicsyndrome,althoughithasbeensug-
gestedthattheglomerulosclerosislesionscommonlyfoundintheseanimalsmaybecausedby
mildbutchronicelevationsinbloodglucoseconcentrations[1].Itis,nevertheless,interesting
thatthisSFA,presumedtobenon-essentialinthediet,hadsuchadramaticmetaboliceffectin
anotherobligatorycarnivore.
Thehigherserumconcentrationsofpristanicandphytanicacidsinthefree-rangingchee-
tahsarelikelytoresultfromthegreaterconsumptionofruminantprey.Phytanicacid
(3,7,11,15-teramethylhexadecanoicacid)isproducedfromphytol,thesidechainofchloro-
phyll,bythemicro-organismspresentintheruminantgastrointestinaltract[57].Mostsatu-
ratedVLCFAsarecomponentsofsphingolipids.TheC24sphingomyelin,whichincorporates
lignocericacid,isparticularlyabundantinliverandkidneytissue[58].Therefore,higher
serumconcentrationsoflignocericandbehenicacidinthefree-rangingcheetahsmayreflect
theirhigherdietaryintakeoftheseorganmeats.
ThereasonsfortheagedifferencesinAAinfree-rangingcheetahs,andγ-linolenicand
eicosadienoicacidincaptivecheetahs,isnotclear.Thecaptivecheetahsallreceivedthesame
diet,regardlessofage,andthereforethesedifferencearemorelikelytoinvolvesmallage
relatedchangesinendogenoussynthesisand/oroxidationoftheseFAratherthandifferences
indietaryintakeinthisgroup.Similardifferenceswerenotobservedinthefree-rangingchee-
tahsandthereforeotherfactorsrelatedtocaptivityarepotentiallyinvolved.Despiteapparent
differencesinthepreypreferencesoffree-rangingmaleandfemalecheetahs[31],noneofthe
PLOSONE|DOI:10.1371/journal.pone.0167608 December19,2016 9/14
SerumFattyAcidProfilesinCheetahs
serumFAsdifferedsignificantlybetweenthesexes,suggestingthatthedietaryfattyacidintake
isreasonablyuniforminfree-ranginganimals.ItisthereforeunlikelythatthelowerserumAA
concentrationsinfree-rangingsub-adultsaretheresultoflowerdietaryintakeofthisFA.The
absenceofanysub-adultcheetahsinthecaptivecheetahgroupleavesagapinourdataandit
ispossiblethatfuturestudiesthatincludecaptivecheetahsinthisagecategorymayfindlower
AAserumconcentrationsthaninoldercaptiveanimals.
Inthisstudy,wedocumentedthetotalserumFAprofilesof43apparentlyhealthyfree-
rangingcheetahsinNamibia.Theunusualdiseasessufferedbycaptivecheetahsarerarely
reportedinfree-rangingcheetahs[3,10,11].Thus,theFAprofilesoffree-rangingcheetahspro-
videareasonablesetofreferencevaluesagainstwhichtheprofilesofcaptiveindividualscanbe
assessed.ThepotentiallinksbetweenthediseasessufferedbycaptivecheetahsandtheFA
compositionoftheirdiet,however,stillremainunclear.Futurestudieswillneedtofocuson
evaluatingtheassociationsbetweentheincidenceand/orseverityofdiseaseandthevarious
serumFAs,aswellastheclinicaleffectsofdietarymanipulationsand/orFAsupplementation.
TherelativeeffectsofextendedfeedingintervalsandincreasedphysicalactivityonserumFAs
incaptivecheetahswillalsoneedtobeassessed.Free-rangingcheetahsrarelyscavengeand
consumemostoftheirpreywithinafewhoursafterakill.Fatsconsumedunderthesecondi-
tionshavelittletimetobecomerancidandthehigherintakeoftheoxidativelymorestable
SFAswouldresultinareducedneedforextensiveantioxidantmechanismstodealwithperox-
idisedFAsinthisspecies.TheextentandimpactofdietaryFAperoxidationshouldtherefore
alsobeassessedinfuturestudies.
Alimitationofourstudywasthelackofcontroloverthefastingperiodpriortosamplingin
thefree-rangingcheetahs.Althoughnobaitwasusedintheircapturetraps,itispossiblethat
someofthecheetahsmayhavefedwithinafewhoursbeforeimmobilizationandsampling.
Duringthepostprandialperiod,thenon-esterifiedfattyacids(NEFAs)generallydeclinein
responsetorisinginsulinlevels,whilethetriacylglycerollipidfractionsincreaseslightlyor
remainstableinhealthyindividuals[59].SincetheNEFAfractionmakesuponlyapproxi-
mately6%ofthetotalserumFAs[26],thepostprandialvariationintotalserumFAsislikelyto
besmall.Nevertheless,itwouldbevaluabletoassessthechangesinserumFAsduringthepost-
prandialperiodinhealthycaptivecheetahsfedondifferentdiets.
Anadditionalpotentiallimitationinourstudywasthedifferencesinserumseparationand
samplestoragetimespriortoanalysisinthecaptiveversusthefree-rangingcheetahs.Although
circulatingNEFAfractionspotentiallyincreaseinbloodandplasmaafter48hoursat4˚C[60],
storageofvariousplasmalipidclasses,includingtriglyceride,cholesterolester,phospholipid
andNEFAfractionsat-20˚Cforayear,wasshowntohaveminimaleffectonstabilityeven
withouttheuseofnitrogenstorage[61].Inarecentreview,MetherelandStarkconcludedthat
plasma/serumstorageat4˚Cforlessthan6days,-20˚Cforonetothreeyearsand-80˚Cforup
to10yearswouldnotlikelyresultinsignificantchangesinPUFAconcentrations.Theeffects
ofdelayedbloodcellseparationontotalserumorplasmaFAconcentrationshavenottoour
knowledgebeenevaluated.However,adelayof24hoursbeforeseparationinsampleskeptat
4˚C,resultedinanincreaseinNEFAconcentrationsofbetween0%and8%inplasma[62,63]
and10%inserum[62].Theseincreasesaremostlikeduetotheactionoflipolyticenzymes
whichresultinaFAshiftfromtheboundfractionstofreeFApool.Suchchangesarenotlikely
toaffectthecombined/totalplasmaorserumFAconcentrationsandthereforethedifferences
insamplehandling,priortostorage,wouldbeexpectedtohaveaminimaleffectonourresults.
TheimpactofdifferentsamplehandlingproceduresontotalserumorplasmaFAsunderfield
conditionsshouldneverthelessbeinvestigatedinfuturestudies.
Inconclusion,wefoundmarkeddifferencesintheserumFAsofcaptiveversusfree-ranging
Namibiancheetahs.Thesedifferencesarelikelytolargelyreflectdifferencesindietaryfat
PLOSONE|DOI:10.1371/journal.pone.0167608 December19,2016 10/14
Description:ing and captive cheetahs lead to different serum FA profiles and to test two predictions derived from this tahs the blood was collected from the cephalic vein directly into the 6ml BD Vacutainer® tubes through placed in a padded box and 0.11mg/kg atipamezole (Antisedan®, Pfizer, South Africa) w