Table Of ContentCAPILLARY ELECTROPHORESIS
AND MICROCHIP CAPILLARY
ELECTROPHORESIS
CAPILLARY ELECTROPHORESIS
AND MICROCHIP CAPILLARY
ELECTROPHORESIS
Principles, Applications, and Limitations
Edited by
CARLOS D. GARC(cid:1)IA
KARIN Y. CHUMBIMUNI-TORRES
Department of Chemistry
The University of Texas at San Antonio
San Antonio, TX, USA
EMANUEL CARRILHO
Institute of Chemistry
University of Sa˜o Paulo
Sa˜o Paulo, Brazil
Copyright#2013byJohnWiley&Sons,Inc.Allrightsreserved.
PublishedbyJohnWiley&Sons,Inc.,Hoboken,NewJersey.
PublishedsimultaneouslyinCanada.
Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorbyanymeans,electronic,mechanical,photocopying,
recording,scanning,orotherwise,exceptaspermittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteitherthepriorwritten
permissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeetotheCopyrightClearanceCenter,Inc.,222RosewoodDrive,
Danvers, MA 01923, (978) 750-8400, fax (978) 750-4470, or on the web at www.copyright.com. Requests to the Publisher for permission should be
addressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,NJ07030,(201)748-6011,fax(201)748-6008,or
online at http://www.wiley.com/go/permission.
LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsinpreparingthisbook,theymakenorepresentationsor
warrantieswithrespecttotheaccuracyorcompletenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesofmerchantabilityor
fitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysalesrepresentativesorwrittensalesmaterials.Theadviceandstrategies
containedhereinmaynotbesuitableforyoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthepublishernorauthorshallbe
liableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedtospecial,incidental,consequential,orotherdamages.
Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactourCustomerCareDepartmentwithintheUnitedStates
at(800)762-2974,outsidetheUnitedStatesat(317)572-3993orfax(317)572-4002.
Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmaynotbeavailableinelectronicformats.Formore
information about Wiley products, visit our web site at www.wiley.com.
LibraryofCongressCataloging-in-PublicationData:
Capillaryelectrophoresisandmicrochipcapillaryelectrophoresis:principles,applications,andlimitations
/editedbyCarlosD.Garc(cid:1)ıa,Ph.D.,UniversityofTexasatSanAntonio;KarinY.Chumbimuni-Torres,
Ph.D.,UniversityofTexasatSanAntonio;EmanuelCarrilho,Ph.D.,UniversityofSaoPaulo.
pagescm
Includesbibliographicalreferencesandindex.
ISBN978-0-470-57217-7(cloth)
1. Capillaryelectrophoresis. 2. Microtechnique.I.Garc(cid:1)ıa,CarlosD.,1972-editorofcompilation. II.
Chumbimuni-Torres,KarinY.,editorofcompilation. III. Carrilho,Emanuel,1965-editorofcompilation.
TP248.25.C37C3652013
502.8’2–dc23
2012031794
PrintedintheUnitedStatesofAmerica
ISBN:9780470572177
10 9 8 7 6 5 4 3 2 1
CONTENTS
PREFACE xvii
ACKNOWLEDGMENTS xix
CONTRIBUTORS xxi
1 CriticalEvaluationoftheUseofSurfactantsinCapillary
Electrophoresis 1
JessicaL.Felhofer,KarinY.Chumbimuni-Torres,MariaF.Mora,GabrielleG.Haby,
andCarlosD.Garc´ıa
1.1 Introduction 1
1.2 SurfactantsforWallCoatings 4
1.2.1 ControllingtheElectroosmoticFlow 4
1.2.2 PreventingAdsorptiontotheCapillary 5
1.3 SurfactantsasBufferAdditives 6
1.3.1 MicellarElectrokineticChromatography 6
1.3.2 MicroemulsionElectrokineticChromatography 8
1.3.3 NonaqueousCapillaryElectrophoresiswithAdded
Surfactants 9
1.4 SurfactantsforAnalytePreconcentration 9
1.4.1 Sweeping 10
1.4.2 TransientTrapping 11
1.4.3 AnalyteFocusingbyMicelleCollapse 12
1.4.4 MicelletoSolventStacking 12
1.4.5 CombinationsofPreconcentrationMethods 12
1.4.6 CloudPointExtraction 12
1.5 SurfactantsandDetectioninCE 14
1.5.1 MassSpectrometry 14
1.5.2 ElectrochemicalDetection 15
1.6 Conclusions 16
References 17
v
vi CONTENTS
2 SampleStacking:AVersatileApproachforAnalyteEnrichment
inCEandMicrochip-CE 23
BrunoPerlatti,EmanuelCarrilho,andFernandoArmaniAguiar
2.1 Introduction 23
2.2 Isotachophoresis 24
2.3 Chromatography-BasedSampleStacking 25
2.4 MethodsBasedonElectrophoreticMobilityandVelocityManipulation
(ElectrophoreticMethods) 26
2.4.1 Field-EnhancedSampleStacking(FESS) 27
2.4.2 Field-EnhancedSampleInjection(FESI) 27
2.4.3 Large-VolumeSampleStacking(LVSS) 28
2.4.4 DynamicpHJunction 28
2.5 SampleStackinginPseudo-StationaryPhases 29
2.5.1 Field-EnhancedSampleStacking 29
2.5.2 HydrodynamicInjectionTechniques 30
2.5.2.1 NormalStackingMode(NSM) 30
2.5.2.2 ReverseElectrodePolarityStackingMode(REPSM) 30
2.5.2.3 StackingwithReverseMigratingMicelles(SRMM) 30
2.5.2.4 StackingUsingReverseMigratingMicelles
andaWaterPlug(SRW) 31
2.5.2.5 High-ConductivitySampleStacking(HCSS) 31
2.5.3 ElectrokineticInjectionTechniques 32
2.5.3.1 Field-EnhancedSampleInjection(FESI–MEKC) 32
2.5.3.2 Field-EnhancedSampleInjectionwithReverse
MigratingMicelles(FESI–RMM) 32
2.5.4 Sweeping 32
2.5.5 CombinedTechniques 33
2.5.5.1 DynamicpHJunction:Sweeping 33
2.5.5.2 SelectiveExhaustiveInjection(SEI) 33
2.5.6 NewTechniques 33
2.6 StackingTechniquesinMicrochips 33
2.7 ConcludingRemarks 36
References 37
3 SamplingandQuantitativeAnalysisinCapillaryElectrophoresis 41
PetrKuba´n9,AndrusSeiman,andMihkelKaljurand
3.1 Introduction 41
3.2 InjectionTechniquesinCE 42
3.2.1 HydrodynamicSampleInjection 43
3.2.1.1 Principle 43
3.2.1.2 AdvantagesandPerformance 44
3.2.1.3 Disadvantages 44
3.2.2 ElectrokineticSampleInjection 44
3.2.2.1 Principle 44
3.2.2.2 AdvantagesandPerformance 45
3.2.2.3 Disadvantages 45
3.2.3 Bias-FreeElectrokineticInjection 45
3.2.4 ExtraneousSampleIntroductionAccompanyingInjectionsinCE 46
3.2.5 SampleStacking 48
3.2.5.1 Principle 48
3.2.5.2 AdvantagesandPerformance 49
3.2.5.3 Disadvantages 50
3.2.6 AlternativeBatchSampleInjectionTechniques 50
CONTENTS vii
3.2.6.1 Rotary-TypeInjectorsforCE 50
3.2.6.2 HydrodynamicSampleSplittingasInjectionMethod
forCE 51
3.2.6.3 ElectrokineticSampleSplittingasInjectionMethod
forCE 52
3.2.6.4 Dual-OppositeEndInjectioninCE 52
3.3 Micromachined/MicrochipInjectionDevices 53
3.3.1 DropletSamplerBasedonDigitalMicrofluidics 53
3.3.2 WireLoopInjection 54
3.4 AutomatedFlowSampleInjectionandHyphenatedSystems 55
3.4.1 Introduction 55
3.4.2 AdvantagesandPerformance 56
3.4.3 Disadvantages 57
3.5 ComputerizedSamplingandDataAnalysis 57
3.6 SamplinginPortableCEInstrumentation 58
3.7 QuantitativeAnalysisinCE 59
3.7.1 Introduction 59
3.7.2 QuantitativeAnalysiswithHDInjection 59
3.7.3 QuantitativeAnalysiswithEKInjection 60
3.7.4 ValidationoftheDevelopedCEMethods 61
3.7.5 ComputerDataTreatmentinQuantitativeAnalysis 61
3.8 Conclusions 62
References 62
4 PracticalConsiderationsfortheDesignandImplementationof
High-VoltagePowerSuppliesforCapillaryandMicrochipCapillary
Electrophoresis 67
LucasBlanes,WendellKarlosTomazelliColtro,RenataMayumiSaito,
ClaudimirLuciodoLago,ClaudeRoux,andPhilipDoble
4.1 Introduction 67
4.1.1 High-VoltageFundamentals 67
4.1.2 ElectroosmoticFlowControl 68
4.1.3 TechnicalAspects 70
4.1.4 ConstructionofBipolarHVPSfromUnipolarHVPS 70
4.1.5 SafetyConsiderations 71
4.1.6 HVPSCommerciallyAvailable 71
4.1.7 PracticalConsiderations 72
4.1.8 AlternativeSourcesofHV 72
4.1.9 HVPSControllersforMCE 72
4.2 High-VoltageMeasurement 73
4.3 ConcludingRemarks 74
References 74
5 ArtificialNeuralNetworksinCapillaryElectrophoresis 77
JosefHavel,EladiaMar(cid:1)ıaPe~na-M(cid:1)endez,andAlbertoRojas-Hern(cid:1)andez
5.1 Introduction 77
5.2 OptimizationinCE:FromSingleVariableApproachToward
ArtificialNeuralNetworks 77
5.2.1 Limitationsof“Traditional”SingleVariableApproach 79
5.2.2 MultivariateApproachwithExperimentalDesignandResponse
SurfaceModeling 79
5.2.2.1 ExperimentalDesign 79
5.2.2.2 ResponseSurfaceModeling 80
viii CONTENTS
5.3 ArtificialNeuralNetworksinElectromigrationMethods 81
5.3.1 Introduction—BasicPrinciplesofANN 81
5.3.2 OptimizationUsingaCombinationofEDandANN 82
5.3.2.1 TestingofED–ANNAlgorithm 83
5.3.2.2 PracticalApplicationsofED–ANN 83
5.3.3 QuantitativeCEAnalysisandDeterminationfrom
OverlappedPeaks 84
5.3.3.1 EvaluationofCalibrationPlotsinCEUsingANN
toIncreasePrecisionofAnalysis 84
5.3.3.2 ANNinQuantitativeCEAnalysisfrom
OverlappedPeaks 86
5.3.4 ANNinCECandMEKC 86
5.3.5 ANNforPeptidesModeling 88
5.3.6 ClassificationandFingerprinting 88
5.3.7 OtherApplications 90
5.4 Conclusions 90
Acknowledgments 91
References 91
6 ImprovingtheSeparationinMicrochipElectrophoresisbySurface
Modification 95
M.TeresaFern(cid:1)andez-Abedul,IsabelA(cid:1)lvarez-Martos,FranciscoJavier
Garc(cid:1)ıaAlonso,andAgust(cid:1)ınCosta-Garc(cid:1)ıa
6.1 Introduction 95
6.2 StrategiesforImprovingSeparation 96
6.2.1 SelectionofanAdequateTechnique:ME 96
6.2.2 MicrochannelDesign 96
6.2.3 SelectionofanAppropriateMEMaterial 96
6.2.4 OptimizationoftheWorkingConditions 97
6.2.5 SurfaceModification 97
6.2.5.1 SurfaceMicro-andNanostructuring 98
6.2.5.2 EmploymentofEnergySources 99
6.2.5.3 ChemicalSurfaceModification 99
6.3 ChemicalModifiers 102
6.3.1 Surfactants 104
6.3.2 IonicLiquids 105
6.3.3 Nanoparticles 108
6.3.4 Polymers 110
6.4 Conclusions 119
Acknowledgments 120
References 120
7 CapillaryElectrophoreticReactorandMicrochipCapillary
ElectrophoreticReactor:DissociationKineticAnalysisMethod
for“Complexes”UsingCapillaryElectrophoreticSeparation
Process 127
ToruTakahashiandNobuhikoIki
7.1 Introduction 127
7.2 BasicConceptofCER 128
7.3 DissociationKineticAnalysisofMetalComplexesUsingaCER 129
7.3.1 DeterminationoftheRateConstantsofDissociationof
1:2ComplexesofAl3þandGa3þwithanAzoDye
Ligand2,20-Dihydroxyazobenzene-5,50-DisulfonateinaCER 130
CONTENTS ix
7.4 ExpandingtheScopeoftheCERtoMeasurementsofFast
DissociationKineticswithaHalf-LifefromSecondsto
DozensofSeconds:DissociationKineticAnalysisofMetal
ComplexesUsingaMicrochipCapillaryElectrophoretic
Reactor(mCER) 133
7.5 ExpandingtheScopeoftheCERtotheMeasurementofSlow
DissociationKineticswithaHalf-LifeofHours 135
7.5.1 PrincipleofLS-CER 135
7.5.2 ApplicationofLS-CERtotheTi(IV)–CatechinComplex 136
7.5.3 ApplicationofLS-CERtotheTi(IV)–TironComplex 138
7.6 ExpandingtheScopeofCERtoMeasurementofthe
DissociationKineticsofBiomolecularComplexes 139
7.6.1 DissociationKineticAnalysisof[SSB–ssDNA]UsingCER 139
7.7 Conclusions 142
References 142
8 CapacitivelyCoupledContactlessConductivityDetection(C4D)Applied
toCapillaryElectrophoresis(CE)andMicrochipElectrophoresis(MCE) 145
Jos(cid:1)eAlbertoFracassidaSilva,ClaudimirLuciodoLago,DosilPereiradeJesus,
andWendellKarlosTomazelliColtro
8.1 Introduction 145
8.2 TheoryofC4D 145
8.2.1 BasicPrinciplesofC4D 145
8.2.2 Simulation 146
8.2.3 BasicEquationforSensitivity 147
8.2.4 EquivalentCircuitofaCE-C4DSystem 147
8.2.5 PracticalGuidelines 148
8.3 C4DAppliedtoCapillaryElectrophoresis 148
8.3.1 InstrumentalAspectsinCE 149
8.3.2 CouplingC4DwithUV–VisPhotometricDetectorsinCE 149
8.3.3 FundamentalStudiesinCapillaryElectrophoresisUsingC4D 149
8.3.4 FundamentalStudiesonC4D 149
8.3.5 Applications 150
8.4 C4DAppliedtoMicrochipCapillaryElectrophoresis 151
8.4.1 GeometryoftheDetectionElectrodes 151
8.4.1.1 EmbeddedElectrodes 151
8.4.1.2 AttachedElectrodes 153
8.4.1.3 ExternalElectrodes 153
8.4.2 Applications 154
8.4.2.1 BioanalyticalApplications 154
8.4.2.2 On-ChipEnzymaticReactions 155
8.4.2.3 FoodAnalysis 155
8.4.2.4 ExplosivesandChemicalWarfareAgents 155
8.4.2.5 OtherApplications 156
8.5 ConcludingRemarks 156
Acknowledgments 157
References 157
9 CapillaryElectrophoresiswithElectrochemicalDetection 161
Bl(cid:1)anaidWhite
9.1 PrinciplesofElectrochemicalDetection 161
9.1.1 AmperometricDetection 161
9.1.2 PotentiometricDetection 162
x CONTENTS
9.1.3 ConductivityDetection 162
9.2 InterfacingAmperometricDetectiontoCapillaryElectrophoresis 163
9.2.1 Off-ColumnDetection 163
9.2.2 End-ColumnDetection 164
9.2.3 UseofMultipleDetectionElectrodes 165
9.2.4 PulsedAmperometricDetection 166
9.2.5 NonaqueousECDetection 166
9.2.6 ElectrodeMaterial 166
9.2.7 DualConductivityandAmperometricDetection 167
9.3 InterfacingElectrochemicalDetectiontoMicrofluidicCapillary
Electrophoresis 168
9.3.1 End-ColumnDetection 168
9.3.2 PulsedAmperometricDetection 169
9.3.3 Off-ChannelDetection 169
9.3.4 ElectrodeMaterial 170
9.3.5 PortableCEandMCESystems 170
9.3.6 ApplicationsofCE–MCEwithAD 171
9.3.7 FutureDirectionsforCE–MCEwithECDetection 173
References 173
10 OvercomingChallengesinUsingMicrochipElectrophoresis
forExtendedMonitoringApplications 177
ScottD.NoblittandCharlesS.Henry
10.1 Introduction 177
10.2 BackgroundElectrolyte(BGE)Longevity 179
10.3 AchievingRapidSequentialInjections 186
10.4 RobustQuantitation 192
10.5 Conclusions 197
References 198
11 DistinctionofCoexistingProteinConformationsbyCapillary
Electrophoresis 201
HannoStutz
11.1 Introduction 201
11.1.1 TheoreticalAspectsofinvivoProteinFolding 202
11.2 ProteinMisfoldingandInductionofUnfolding 203
11.3 ConformationalPathologies 204
11.4 DistinctionBetweenConformations 205
11.5 RelevanceofConformationsforBiotechnologicalProducts 206
11.6 ConformationalElucidation—AnOverviewofAlternative
MethodstoCE 206
11.7 HPLCinConformationalDistinction 207
11.7.1 IntactProteins 207
11.7.1.1 Reversed-Phase(RP)–HPLC 207
11.7.1.2 SizeExclusion(SEC)–HPLC 208
11.7.1.3 Ion-Exchange–HPLC 208
11.7.2 HPLCwithDetectorsSensitiveforConformations
andAggregates 208
11.7.3 PeptidesasModelCompoundsforHydrophobic
StationaryPhasesinHPLC 208
11.8 CapillaryElectrophoresis(CE)inConformationalSeparations 209
11.8.1 FundamentalAspectsandSurveyofPitfalls 209
CONTENTS xi
11.8.2 ElectrophoreticMobilityofProteins 210
11.8.3 PeakProfilesandDerivableThermodynamicAspects
ofProteinRe-/Unfolding 211
11.8.4 DipeptidesasaCaseStudyforIsomerization 213
11.8.5 DenaturationFactorsandStrategiesAppliedinCE 214
11.8.5.1 SeparationElectrolyte,InjectionSolution,and
SampleStorage 215
11.8.5.2 DenaturationbyUrea,Dithiothreitol,andGdmCl 215
11.8.5.3 EffectsofpHandOrganicSolvents 216
11.8.5.4 Temperature 216
11.8.5.5 ElectricalField 218
11.8.5.6 Detergents 218
11.8.5.7 LigandsandIons—CaseStudiesonPotential
Amyloidogenicb m 221
2
11.8.6 b-AmyloidPeptides 222
11.8.6.1 Prions 223
11.9 ComparisonBetweenCEandHPLC 223
11.10 ConclusiveDiscussionandMethodEvaluation 223
11.10.1 GeneralAspects 223
11.10.2 HPLC 224
11.10.3 CE 224
References 225
12 CapillaryElectromigrationTechniquesfortheAnalysisofDrugs
andMetabolitesinBiologicalMatrices:ACriticalAppraisal 229
CristianeMasettodeGaitani,AndersonRodrigoMoraesdeOliveira,and
PierinaSueliBonato
12.1 Introduction 229
12.2 StrategiestoObtainReliableCapillaryElectromigrationMethods
fortheBioanalysisofDrugsandMetabolites 230
12.2.1 SelectivityandDetectability 230
12.2.1.1 Efficiency 232
12.2.1.2 SamplePreparation 233
12.2.1.3 Detectors 235
12.2.2 Repeatability 236
12.3 SelectedApplicationsofCapillaryElectromigrationTechniquesin
Bioanalysis 238
12.3.1 PharmacokineticsandMetabolismStudies 238
12.3.2 EnantioselectiveAnalysisofDrugsandMetabolites 240
12.3.3 BiopharmaceuticalsorBiotechnology-Derived
Pharmaceuticals 240
12.3.4 TherapeuticDrugMonitoring 241
12.3.5 ClinicalandForensicToxicology 242
12.4 ConcludingRemarks 243
References 243
13 CapillaryElectrophoresisandMulticolor
FluorescentDNAAnalysisinan
OptofluidicChip 247
ChaitanyaDongre,HugoJ.W.M.Hoekstra,andMarkusPollnau
13.1 Introduction 247
13.2 OptofluidicIntegrationinanElectrophoreticMicrochip 248