Table Of ContentActive Plasmonics and
Tuneable Plasmonic
Metamaterials
Active Plasmonics and
Tuneable Plasmonic
Metamaterials
Editedby
Anatoly V. Zayats
Stefan A. Maier
Copyright(cid:2)C 2013byJohnWiley&Sons,Inc.Allrightsreserved.
Co-PublishedbyJohnWiley&Sons,Inc.,andScienceWisePublishingHoboken,NewJersey.
PublishedsimultaneouslyinCanada.
Nopartofthispublicationmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformor
byanymeans,electronic,mechanical,photocopying,recording,scanning,orotherwise,exceptas
permittedunderSection107or108ofthe1976UnitedStatesCopyrightAct,withouteithertheprior
writtenpermissionofthePublisher,orauthorizationthroughpaymentoftheappropriateper-copyfeeto
theCopyrightClearanceCenter,Inc.,222RosewoodDrive,Danvers,MA01923,(978)750-8400,
fax(978)750-4470,oronthewebatwww.copyright.com.RequeststothePublisherforpermission
shouldbeaddressedtothePermissionsDepartment,JohnWiley&Sons,Inc.,111RiverStreet,Hoboken,
NJ07030,(201)748-6011,fax(201)748-6008,oronlineathttp://www.wiley.com/go/permission.
LimitofLiability/DisclaimerofWarranty:Whilethepublisherandauthorhaveusedtheirbesteffortsin
preparingthisbook,theymakenorepresentationsorwarrantieswithrespecttotheaccuracyor
completenessofthecontentsofthisbookandspecificallydisclaimanyimpliedwarrantiesof
merchantabilityorfitnessforaparticularpurpose.Nowarrantymaybecreatedorextendedbysales
representativesorwrittensalesmaterials.Theadviceandstrategiescontainedhereinmaynotbesuitable
foryoursituation.Youshouldconsultwithaprofessionalwhereappropriate.Neitherthepublishernor
authorshallbeliableforanylossofprofitoranyothercommercialdamages,includingbutnotlimitedto
special,incidental,consequential,orotherdamages.
Forgeneralinformationonourotherproductsandservicesorfortechnicalsupport,pleasecontactour
CustomerCareDepartmentwithintheUnitedStatesat(800)762-2974,outsidetheUnitedStatesat
(317)572-3993orfax(317)572-4002.
Wileyalsopublishesitsbooksinavarietyofelectronicformats.Somecontentthatappearsinprintmay
notbeavailableinelectronicformats.FormoreinformationaboutWileyproducts,visitourwebsiteat
www.wiley.com.
LibraryofCongressCataloging-in-PublicationData:
Activeplasmonicsandtuneableplasmonicmetamaterials/editedbyAnatolyV.Zayats,StefanA.Maier.
pagescm
Includesbibliographicalreferencesandindex.
ISBN978-1-118-09208-8(hardback)
1.Plasmons(Physics) 2. Metamaterials. I. Zayats,A.V.(AnatolyV.),editorofcompilation.
II. Maier,StefanA.,editorofcompilation.
QC176.8.P55A322013
530.4(cid:3)4–dc23
2012047943
PrintedintheUnitedStatesofAmerica
10 9 8 7 6 5 4 3 2 1
Contents
Preface xiii
Contributors xvii
1 Spaser,PlasmonicAmplification,andLossCompensation 1
MarkI.Stockman
1.1 IntroductiontoSpasersandSpasing 1
1.2 SpaserFundamentals 2
1.2.1 BriefOverviewoftheLatestProgressinSpasers 5
1.3 QuantumTheoryofSpaser 7
1.3.1 SurfacePlasmonEigenmodesandTheirQuantization 7
1.3.2 QuantumDensityMatrixEquations(OpticalBloch
Equations)forSpaser 9
1.3.3 EquationsforCWRegime 11
1.3.4 SpaseroperationinCWMode 15
1.3.5 SpaserasUltrafastQuantumNanoamplifier 17
1.3.6 MonostableSpaserasaNanoamplifierinTransient
Regime 18
1.4 CompensationofLossbyGainandSpasing 22
1.4.1 IntroductiontoLossCompensationbyGain 22
1.4.2 PermittivityofNanoplasmonicMetamaterial 22
1.4.3 PlasmonicEigenmodesandEffectiveResonant
PermittivityofMetamaterials 24
v
vi Contents
1.4.4 ConditionsofLossCompensationbyGainandSpasing 25
1.4.5 DiscussionofSpasingandLossCompensationbyGain 27
1.4.6 DiscussionofPublishedResearchonSpasingand
LossCompensations 29
Acknowledgments 33
References 33
2 NonlinearEffectsinPlasmonicSystems 41
PavelGinzburgandMeirOrenstein
2.1 Introduction 41
2.2 MetallicNonlinearities—BasicEffectsandModels 43
2.2.1 LocalNonlinearity—TransientsbyCarrierHeating 43
2.2.2 PlasmaNonlinearity—ThePonderomotiveForce 45
2.2.3 ParametricProcessinMetals 46
2.2.4 MetalDamageandAblation 48
2.3 NonlinearPropagationofSurfacePlasmonPolaritons 49
2.3.1 NonlinearSPPModes 50
2.3.2 PlasmonSolitons 50
2.3.3 NonlinearPlasmonicWaveguideCouplers 54
2.4 LocalizedSurfacePlasmonNonlinearity 55
2.4.1 CavitiesandNonlinearInteractionsEnhancement 56
2.4.2 EnhancementofNonlinearVacuumEffects 58
2.4.3 HighHarmonicGeneration 60
2.4.4 LocalizedFieldEnhancementLimitations 60
2.5 Summary 62
Acknowledgments 62
References 62
3 PlasmonicNanorodMetamaterialsasaPlatformfor
ActiveNanophotonics 69
GregoryA.Wurtz,WayneDickson,AnatolyV.Zayats,AntonyMurphy,
andRobertJ.Pollard
3.1 Introduction 69
3.2 NanorodMetamaterialGeometry 71
3.3 OpticalProperties 72
3.3.1 MicroscopicDescriptionoftheMetamaterial
ElectromagneticModes 72
3.3.2 EffectiveMediumTheoryoftheNanorodMetamaterial 76
Contents vii
3.3.3 Epsilon-Near-ZeroMetamaterialsandSpatialDispersion
Effects 79
3.3.4 GuidedModesintheAnisotropicMetamaterialSlab 82
3.4 NonlinearEffectsinNanorodMetamaterials 82
3.4.1 NanorodMetamaterialHybridizedwithNonlinear
Dielectric 84
3.4.2 IntrinsicMetalNonlinearityofNanorodMetamaterials 85
3.5 MolecularPlasmonicsinMetamaterials 89
3.6 Electro-OpticalEffectsinPlasmonicNanorodMetamaterial
HybridizedwithLiquidCrystals 97
3.7 Conclusion 98
References 99
4 TransformationOpticsforPlasmonics 105
AlexandreAubryandJohnB.Pendry
4.1 Introduction 105
4.2 TheConformalTransformationApproach 108
4.2.1 ASetofCanonicPlasmonicStructures 109
4.2.2 PerfectSingularStructures 110
4.2.3 SingularPlasmonicStructures 114
4.2.3.1 ConformalMappingofSingularStructures 114
4.2.3.2 ConformalMappingofBlunt-EndedSingular
Structures 118
4.2.4 ResonantPlasmonicStructures 119
4.3 BroadbandLightHarvestingandNanofocusing 121
4.3.1 BroadbandLightAbsorption 121
4.3.2 BalancebetweenEnergyAccumulationand
Dissipation 123
4.3.3 Extensionto3D 125
4.3.4 Conclusion 126
4.4 SurfacePlasmonsandSingularities 127
4.4.1 ControloftheBandwidthwiththeVertexAngle 127
4.4.2 EffectoftheBluntness 129
4.5 PlasmonicHybridizationRevisitedwithTransformationOptics 130
4.5.1 AResonantBehavior 131
4.5.2 NanofocusingProperties 132
4.6 BeyondtheQuasi-StaticApproximation 133
4.6.1 ConformalTransformationPicture 134
4.6.2 RadiativeLosses 135
viii Contents
4.6.3 FluorescenceEnhancement 137
4.6.3.1 FluorescenceEnhancementintheNear-Field
ofNanoantenna 138
4.6.3.2 TheCTApproach 139
4.7 Nonlocaleffects 142
4.7.1 ConformalMappingofNonlocality 142
4.7.2 TowardthePhysicsofLocalDimers 143
4.8 SummaryandOutlook 145
Acknowledgments 145
References 145
5 LossCompensationandAmplificationofSurface
PlasmonPolaritons 153
PierreBerini
5.1 Introduction 153
5.2 SurfacePlasmonWaveguides 154
5.2.1 UnidimensionalStructures 154
5.2.2 BidimensionalStructures 156
5.2.3 Confinement-AttenuationTrade-Off 156
5.2.4 OpticalProcessesInvolvingSPPs 157
5.3 SingleInterface 157
5.3.1 Theoretical 157
5.3.2 Experimental 158
5.4 SymmetricMetalFilms 160
5.4.1 Gratings 160
5.4.2 Theoretical 160
5.4.3 Experimental 161
5.5 MetalClads 163
5.5.1 Theoretical 164
5.5.2 Experimental 164
5.6 OtherStructures 164
5.6.1 Dielectric-LoadedSPPWaveguides 164
5.6.2 HybridSPPWaveguide 165
5.6.3 Nanostructures 166
5.7 Conclusions 166
References 167
Contents ix
6 ControllingLightPropagationwithInterfacialPhaseDiscontinuities 171
NanfangYu,MikhailA.Kats,PatriceGenevet,FrancescoAieta,
RomainBlanchard,GuillaumeAoust,ZenoGaburro,and
FedericoCapasso
6.1 PhaseResponseofOpticalAntennas 172
6.1.1 Introduction 172
6.1.2 SingleOscillatorModelforLinearOpticalAntennas 174
6.1.3 Two-OscillatorModelfor2DStructuresSupporting
TwoOrthogonalPlasmonicModes 176
6.1.4 AnalyticalModelsforV-ShapedOpticalAntennas 179
6.1.5 OpticalPropertiesofV-ShapedAntennas:Experiments
andSimulations 183
6.2 ApplicationsofPhasedOpticalAntennaArrays 186
6.2.1 GeneralizedLawsofReflectionandRefraction:
Meta-InterfaceswithPhaseDiscontinuities 186
6.2.2 Out-of-PlaneReflectionandRefraction
ofLightbyMeta-Interfaces 192
6.2.3 GiantandTuneableOpticalBirefringence 197
6.2.4 VortexBeamsCreatedbyMeta-Interfaces 200
References 213
7 IntegratedPlasmonicDetectors 219
PieterNeutensandPaulVanDorpe
7.1 Introduction 219
7.2 ElectricalDetectionofSurfacePlasmons 221
7.2.1 PlasmonDetectionwithTunnelJunctions 221
7.2.2 Plasmon-EnhancedSolarCells 222
7.2.3 Plasmon-EnhancedPhotodetectors 225
7.2.4 Waveguide-IntegratedSurfacePlasmonPolariton
Detectors 232
7.3 Outlook 236
References 237
8 TerahertzPlasmonicSurfacesforSensing 243
StephenM.HanhamandStefanA.Maier
8.1 TheTerahertzRegionforSensing 244
8.2 THzPlasmonics 244
x Contents
8.3 SPPsonSemiconductorSurfaces 245
8.3.1 ActiveControlofSemiconductorPlasmonics 247
8.4 SSPPonStructuredMetalSurfaces 247
8.5 THzPlasmonicAntennas 249
8.6 ExtraordinaryTransmission 253
8.7 THzPlasmonsonGraphene 255
References 256
9 SubwavelengthImagingbyExtremelyAnisotropicMedia 261
PavelA.Belov
9.1 IntroductiontoCanalizationRegimeofSubwavelength
Imaging 261
9.2 WireMediumLensattheMicrowaveFrequencies 264
9.3 MagnifyingandDemagnifyingLenseswithSuper-Resolution 269
9.4 ImagingattheTerahertzandInfraredFrequencies 272
9.5 NanolensesFormedbyNanorodArraysfortheVisible
FrequencyRange 276
9.6 SuperlensesandHyperlensesFormedbyMultilayered
Metal–DielectricNanostructures 279
References 284
10 ActiveandTuneableMetallicNanoslitLenses 289
SatoshiIshii,XingjieNi,VladimirP.Drachev,MarkD.Thoreson,
VladimirM.Shalaev,andAlexanderV.Kildishev
10.1 Introduction 289
10.2 Polarization-SelectiveGoldNanoslitLenses 290
10.2.1 DesignConceptofGoldNanoslitLenses 291
10.2.2 ExperimentalDemonstrationofGoldNanoslitLenses 292
10.3 MetallicNanoslitLenseswithFocal-IntensityTuneabilityand
FocalLengthShifting 295
10.3.1 LiquidCrystal-ControlledNanoslitLenses 295
10.3.2 NonlinearMaterialsforControllingNanoslitLenses 300
10.4 LamellarStructureswithHyperbolicDispersionEnable
SubwavelengthFocusingwithMetallicNanoslits 301
10.4.1 ActiveLamellarStructureswithHyperbolic
Dispersion 302
10.4.2 SubwavelengthFocusingwithActiveLamellar
Structures 307
Contents xi
10.4.3 ExperimentalDemonstrationofSubwavelength
Diffraction 308
10.5 Summary 313
Acknowledgments 313
References 313