Table Of Content3D Laser Microfabrication
Principles and Applications
Edited by
Hiroaki Misawa and Saulius Juodkazis
Editors & AllbookspublishedbyWiley-VCHare
carefullyproduced.Nevertheless,authors,
HiroakiMisawa editors,andpublisherdonotwarrantthe
ResearchInstituteforElectronicScience informationcontainedinthesebooks,
HokkaidoUniversity,Japan includingthisbook,tobefreeoferrors.
[email protected] Readersareadvisedtokeepinmindthat
statements,data,illustrations,procedural
detailsorotheritemsmayinadvertently
SauliusJuodkazis beinaccurate.
ResearchInstituteforElectronicScience
LibraryofCongressCardNo.:appliedfor
HokkaidoUniversity,Japan
[email protected]
BritishLibraryCataloguing-in-PublicationData
Acataloguerecordforthisbookisavailable
fromtheBritishLibrary.
Cover
Bibliographicinformationpublishedby
Periodicstructureofabody-centeredcubiclattice DieDeutscheBibliothek
numericallysimulatedbyinterferenceoffourplane DieDeutscheBibliothekliststhispublication
waves. intheDeutscheNationalbibliografie;detailed
bibliographicdataisavailableintheInternetat
<http://dnb.ddb.de>.
(cid:1)2006WILEY-VCHVerlagGmbH&Co.KGaA,
Weinheim
Allrightsreserved(includingthoseof
translationintootherlanguages).
Nopartofthisbookmaybereproduced
inanyform–nortransmittedortranslated
intomachinelanguagewithoutwritten
permissionfromthepublishers.Registered
names,trademarks,etc.usedinthisbook,
evenwhennotspecificallymarkedassuch,
arenottobeconsideredunprotectedbylaw.
Typesetting K(cid:2)hn&Weyh,SatzundMedien,
Freiburg
Printing StraussGmbH,M(cid:3)rlenbach
Bookbinding Litges&DopfBuchbindereiGmbH,
Heppenheim
PrintedintheFederalRepublicofGermany.
Printedonacid-freepaper.
ISBN-13: 978-3-527-31055-5
ISBN-10: 3-527-31055-X
V
Contents
ListofContributors XIII
1 Introduction 1
HiroakiMisawaandSauliusJuodkazis
2 Laser–MatterInteractionConfinedInsidetheBulkofaTransparentSolid 5
EugeneGamaly,BarryLuther-DaviesandAndreiRode
2.1 Introduction 5
2.2 Laser–matterInteractions:BasicProcessesandGoverning
Equations 7
2.2.1 LaserIntensityDistributioninaFocalDomain 7
2.2.2 AbsorbedEnergyDensityRate 8
2.2.3 Electron–phonon(ions)EnergyExchange,HeatConductionand
Hydrodynamics:Two-temperatureApproximation 9
2.2.4 TemperatureintheAbsorptionRegion 11
2.2.5 AbsorptionMechanisms 12
2.2.6 ThresholdfortheChangeinOpticalandMaterialProperties
(“OpticalDamage”) 13
2.3 NondestructiveInteraction:Laser-inducedPhaseTransitions 13
2.3.1 Electron–PhononEnergyExchangeRate 14
2.3.2 PhaseTransitionCriteriaandTime 14
2.3.3 FormationofDiffractiveStructuresinDifferentMaterials 15
2.3.3.1 ModificationsInducedbyLightinNoncrystallineChalcogenide
Glass 15
2.3.3.2 Two-photonExcitationofFluorescence 16
2.3.3.3 Photopolymerization 17
2.3.3.4 PhotorefractiveEffect 17
2.4 Laser–SolidInteractionatHighIntensity 18
2.4.1 LimitationsImposedbytheLaserBeamSelf-focusing 18
2.4.2 OpticalBreakdown:IonizationMechanismsandThresholds 19
2.4.2.1 IonizationbyElectronImpact(AvalancheIonization) 19
2.4.2.2 MultiphotonIonization 21
3DLaserMicrofabrication.PrinciplesandApplications.
EditedbyH.MisawaandS.Juodkazis
Copyright(cid:1)2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim
ISBN:3-527-31055-X
VI Contents
2.4.3 TransientElectronandEnergyDensityinaFocalDomain 21
2.4.2.1 IonizationandDamageThresholds 22
2.4.3.2 AbsorptionCoefficientandAbsorptionDepthinPlasma 23
2.4.3.3 ElectronTemperatureandPressureinEnergyDepositionVolumeto
theEndoftheLaserPulse 23
2.4.4 Electron-to-ionEnergyTransfer:HeatConductionandShockWave
Formation 24
2.4.4.1 ElectronicHeatConduction 25
2.4.4.2 ShockWaveFormation 26
2.4.5 ShockWaveExpansionandStopping 27
2.4.6 ShockandRarefactionWaves:FormationofVoid 27
2.4.7 PropertiesofShock-and-heat-affectedSolidafterUnloading 28
2.5 Multiple-pulseInteraction:EnergyAccumulation 29
2.5.1 TheHeat-affectedZonefromtheActionofManyConsecutive
Pulses 30
2.5.2 CumulativeHeatingandAdiabaticExpansion 30
2.6 Conclusions 31
3 SphericalAberrationanditsCompensationfor
HighNumericalApertureObjectives 37
MinGuandGuangyongZhou
3.1 Three-dimensionalIndensityPoint-spreadFunctionintheSecond
Medium 38
3.1.1 RefractiveIndicesMismatch-inducedSphericalAberration 38
3.1.2 VectorialPoint-spreadFunctionthroughDielectricInterfaces 39
3.1.3 ScalarPoint-spreadFunctionthroughDielectricInterfaces 40
3.2 SphericalAberrationCompensationbyaTube-lengthChange 41
3.3 EffectsofRefractiveIndicesMismatch-inducedSphericalAberration
on3DOpticalDataStorage 42
3.3.1 AberratedPoint-spreadFunctionInsideaBleachingPolymer 42
3.3.2 CompensationforSphericalAberrationBasedonaVariableTube
Length 46
3.3.3 Three-dimensionalDataStorageinaBleachingPolymer 46
3.4 EffectsofRefractiveIndexMismatchInducedSphericalAberration
ontheLaserTrappingForce 49
3.4.1 IntensityPoint-spreadFunctioninAqueousSolution 49
3.4.2 CompensationforSphericalAberrationBasedonaChangeofTube
Length 50
3.4.3 TransverseTrappingEfficiencyandTrappingPowerunderVarious
EffectiveNumericalApertures 52
3.5 Summary 55
Contents VII
4 TheMeasurementofUltrashortLightPulses
inMicrofabricationApplications 57
XunGu,SelcukAkturk,AparnaShreenath,QiangCao,andRickTrebino
4.1 Introduction 57
4.2 AlternativestoFROG 58
4.3 FROGandCross-correlationFROG 59
4.4 Dithered-crystalXFROGforMeasuringUltracomplex
SupercontinuumPulses 60
4.5 OPAXFROGforMeasuringUltraweakBroadbandEmission 64
4.6 ExtremelySimpleFROGDevice 71
4.7 OtherProgress 80
4.8 Conclusions 82
5 NonlinearOptics 85
JohnBuckandRickTrebino
5.1 LinearversusNonlinearOptics 85
5.2 Nonlinear-opticalEffects 87
5.3 SomeGeneralObservationsaboutNonlinearOptics 92
5.4 TheMathematicsofNonlinearOptics 93
5.4.1 TheSlowlyVaryingEnvelopeApproximation 93
5.4.2 SolvingtheWaveEquationintheSlowlyVaryingEnvelope
Approximation 96
5.5 Phase-matching 97
5.6 Phase-matchingBandwidth 102
5.6.1 DirectCalculation 102
5.6.2 Group-velocityMismatch 104
5.6.3 Phase-matchingBandwidthConclusions 106
5.7 Nonlinear-opticalStrengths 106
6 FilamentationversusOpticalBreakdowninBulkTransparentMedia 109
EugenijusGaizˇauskas
6.1 Introduction 109
6.2 ConicalWaves:TiltedPulses,BesselBeamsandX-typeWaves 111
6.3 DynamicsofShort-pulseSplittinginNonlinearMediawithNormal
Dispersion:EffectsofNonlinearLosses 116
6.4 OnthePhysicsofSelf-channeling:BeamReconstructionfromConial
Waves 120
6.5 Multi-filamentsandMulti-focuses 125
6.5.1 MultipleFlamentationinBulkTransparentMedia 127
6.5.2 CapillaryWaveguidefromFemtosecondFilamentation 131
6.6 FilamentationInducedbyConicalWavepacket 134
6.7 Conclusion 136
VIII Contents
7 PhotophysicsandPhotochemistryof
UltrafastLaserMaterialsProcessing 139
RichardF.Haglund,Jr.
7.1 IntroductionandMotivation 139
7.2 UltrafastLaserMaterialsInteractions:ElectronicExcitation 140
7.2.1 Metals:TheTwo-temperatureModel 142
7.2.2 Semiconductors 145
7.2.2.1 UltrafastLaser-inducedMeltinginSemiconductors 145
7.2.2.2 UltrafastLaserAblationinSemiconductors 147
7.2.2.3 TheoreticalStudiesofFemtosecondLaserInteractionswith
Semiconductors 148
7.2.3 Insulators 148
7.2.3.1 UltrafastAblationofInsulators 150
7.2.3.2 Self-focusingofUltrashortPulsesforThree-dimensional
Structures 152
7.2.3.3 Color-centerFormationbyFemtosecondLaserIrradiation 154
7.3 UltrafastLaser-materialsInteraction:VibrationalExcitation 156
7.3.1 AblationofInorganicMaterialsbyResonantVibrational
Excitation 157
7.3.2 AblationofOrganicMaterialsbyResonantVibrationalExcitation 158
7.4 PhotochemistryinFemtosecondLaser-materialsInteractions 159
7.4.1 SulfidationofSiliconNanostructuresbyFemtosecondIrradiation 160
7.4.2 NitridationofMetalSurfacesUsingPicosecondMIRRadiation 161
7.5 PhotomechanicalEffectsatFemtosecondTimescales 161
7.5.1 ShockWaves,PhaseTransitionsandTribology 162
7.5.2 CoherentPhononExcitationsinMetals 163
7.5.3 UltrafastLaser-inducedForwardTransfer(LIFT) 165
7.6 PulsedLaserDeposition 166
7.6.1 Near-infraredPulsedLaserDeposition 167
7.6.2 InfraredPulsedLaserDepositionofOrganicMaterialsonMicro-and
Nanostructures 168
7.7 FutureTrendsinUltrafastLaserMicromachining 170
7.7.1 Ultrashort-pulseMaterialsModificationatHighPulse-repetition
Frequency 170
7.7.2 PulsedLaserDepositionatHighPulse-repetitionFrequency 171
7.7.2.1 DepositionofInorganicThinFilms 171
7.7.2.2 DepositionofOrganicThinFilms 173
7.7.3 PicosecondProcessingofCarbonNanotubes 174
7.7.4 Sub-micronParallel-processPatterningofMaterialswithUltraviolet
Lasers 174
7.8 SummaryandConclusions 175
Contents IX
8 FormationofSub-wavelengthPeriodicStructuresInside
TransparentMaterials 181
PeterG.Kazansky
8.1 Introduction 182
8.2 AnomalousAnisotropicLight-scatteringinGlass 183
8.3 AnisotropicCherenkovLight-generationinGlass 185
8.4 AnisotropicReflectionfromFemtosecond-laserSelf-organized
NanostructuresinGlass 186
8.5 DirectObservationofSelf-organizedNanostructuresinGlass 190
8.6 MechanismofFormationofSelf-organizedNanostructuresin
Glass 192
8.7 Self-organizedFormBirefringence 195
8.8 Conclusion 198
9 X-rayGenerationfromOpticalTransparentMaterialsby
FocusingUltrashortLaserPulses 199
KojiHatanakaandHiroshiFukumura
9.1 Introduction 199
9.2 Laser-inducedHigh-energyPhotonEmissionfromTransparent
Materials 201
9.2.1 EmissionofExtremeUltravioletLightandSoftX-ray 201
9.2.2 FundamentalMechanismsLeadingtoHigh-energyPhoton
Emission 204
9.2.3 CharacteristicX-rayIntensityasaFunctionofAtomicNumber 208
9.3 CharacteristicsofHardX-rayEmissionfromTransparent
Materials 213
9.3.1 ExperimentalSetupsforLaser-inducedHardX-rayEmission 213
9.3.2 EffectsofAirPlasmaandSampleSelf-absorption 215
9.3.3 Multi-photonAbsorptionandEffectsoftheAdditionof
Electrolytes 218
9.3.4 Multi-shotEffectsonSolidMaterials 219
9.3.5 Pre-pulseIrradiationEffectsonAqueousSolutions 224
9.4 PossibleApplications 230
9.4.1 X-rayImaging 230
9.4.2 ElementalAnalysisbyX-rayEmissionSpectroscopy 231
9.4.3 Ultra-fastX-rayAbsorptionSpectroscopy 234
9.5 Summary 235
10 FemtosecondLaserMicrofabricationofPhotonicCrystals 239
VygantasMizeikis,ShigekiMatsuo,SauliusJuodkazis,andHiroakiMisawa
10.1 MicrofabricationofPhotonicCrystalsbyUltrafastLasers 240
10.1.1 NonlinearAbsorptionofSpatiallyNonuniformLaserFields 242
10.1.2 MechanismsofPhotomodification 244
X Contents
10.2 PhotonicCrystalsObtainedbyDirectLaserWriting 250
10.2.1 FabricationbyOpticalDamageinInorganicGlasses 251
10.2.2 FabricationbyOpticalDamageinOrganicGlasses 253
10.2.3 LithographybyTwo-photonSolidificationinPhoto-curingResins 257
10.2.4 LithographyinOrganicPhotoresists 259
10.2.4.1 StructureswithWoodpileArchitecture 260
10.2.4.2 StructureswithSpiralArchitecture 264
10.3 LithographybyMultiple-beamInterference 269
10.3.1 GenerationofPeriodicLightIntensityPatterns 269
10.3.2 PracticalImplementationofMultiple-beamInterference
Lithography 273
10.3.3 LithographicRecordingofPeriodicStructuresbyMultiple-beam
Interference 275
10.3.3.1 Two-dimensionalStructures 275
10.3.3.2 Three-dimensionalStructures 278
10.4 Conclusions 282
11 PhotophysicalProcessesthatLeadtoAblation-freeMicrofabricationin
Glass-ceramicMaterials 287
FrankE.LivingstonandHenryHelvajian
11.1 Introduction 288
11.2 PhotostructurableGlass-ceramic(PSGC)Materials 291
11.3 LaserProcessingPhotophysics 300
11.4 LaserDirect-writeMicrofabrication 320
11.5 Conclusions 332
12 ApplicationsofFemtosecondLasersin3DMachining 341
AndreasOstendorf,FrankKorte,GuentherKamlage,UlrichKlug,JuergenKoch,
JesperSerbin,NikoBaersch,ThorstenBauer,BorisN.Chichkov
12.1 MachiningSystem 341
12.1.1 UltrafastLaserSources 341
12.1.2 Automation,Part-handlingandPositioning 343
12.2 BeamDelivery 344
12.2.1 TransmissionOptics 344
12.2.2 ScanningSystems 346
12.2.3 FiberDelivery 348
12.3 MaterialProcessing 349
12.3.1 AblationofMetalsandDielectrics 349
12.3.2 fs-laser-inducedProcesses 352
12.4 NonlinearEffectsforNano-machining 355
12.4.1 MultiphotonAblation 355
12.4.2 Two-photonPolymerization 356
12.5 MachiningTechnology 359
12.5.1 Drilling 359
Contents XI
12.5.2 Cutting 362
12.5.3 Ablationof3DStructures 364
12.6 Applications 366
12.6.1 Fluidics 366
12.6.2 Medicine 369
12.6.2.1 fs-LASIK(LaserinSituKeratomileusis) 369
12.6.2.2 DentalTreatment 370
12.6.2.3 CardiovascularImplants 370
12.6.3 Microelectronics 371
13 (Some)FutureTrends 379
SauliusJuodkazisandHiroakiMisawa
13.1 GeneralOutlook 379
13.2 OntheWaytotheFuture 380
13.3 Example:“Shocked”Materials 381
13.4 TheFutureisHere 383
Index 387
XIII
Listof Contributors
SelcukAkturk QiangCao
GeorgiaInstituteofTechnology GeorgiaInstituteofTechnology
GeorgiaCenterforUltrafastOptics GeorgiaCenterforUltrafastOptics
SchoolofPhysics SchoolofPhysics
837StateSt. 837StateSt.
Atlanta,GA30332 Atlanta,GA30332
USA USA
NikoBaersch BorisN.Chichkov
LaserZentrumHannovereV LaserZentrumHannovereV
Hollerithallee8 Hollerithallee8
30419Hannover 30419Hannover
Germany Germany
ThorstenBauer HiroshiFukumura
LaserZentrumHannovereV DepartmentofChemistry
Hollerithallee8 GraduateSchoolofScience
30419Hannover TohokuUniversity
Germany Sendai980-8578
Japan
JohnBuck
GeorgiaInstituteofTechnology EugenijusGaizˇauskas
SchoolofElectricalandComputer LaserResearchCenter
Engineering DepartmentofQuantumElectronics
VanLeerElectricalEngineering UniversityofVilnius
Building Sauletekioal.9
777AtlanticDriveNW 10222Vilnius
Atlanta,GA30332-0250 Lithuania
USA
3DLaserMicrofabrication.PrinciplesandApplications.
EditedbyH.MisawaandS.Juodkazis
Copyright(cid:1)2006WILEY-VCHVerlagGmbH&Co.KGaA,Weinheim
ISBN:3-527-31055-X