Table Of ContentIB Physics 1st Semester
Derrick mcneill
James H Dann, Ph.D.
SayThankstotheAuthors
Clickhttp://www.ck12.org/saythanks
(Nosigninrequired)
www.ck12.org
AUTHORS
Derrickmcneill
To access a customizable version of this book, as well as other
JamesHDann,Ph.D.
interactivecontent,visitwww.ck12.org
CONTRIBUTORS
AntonioDeJesusLópez
CatherinePavlov
ChrisAddiego
CK-12 Foundation is a non-profit organization with a mission to
reduce the cost of textbook materials for the K-12 market both
in the U.S. and worldwide. Using an open-content, web-based
collaborative model termed the FlexBook®, CK-12 intends to
pioneerthegenerationanddistributionofhigh-qualityeducational
content that will serve both as core text as well as provide an
adaptiveenvironmentforlearning,poweredthroughtheFlexBook
Platform®.
Copyright©2012CK-12Foundation,www.ck12.org
The names “CK-12” and “CK12” and associated logos and the
terms “FlexBook®” and “FlexBook Platform®” (collectively
“CK-12 Marks”) are trademarks and service marks of CK-12
Foundation and are protected by federal, state, and international
laws.
Any form of reproduction of this book in any format or medium,
in whole or in sections must include the referral attribution link
http://www.ck12.org/saythanks (placed in a visible location) in
additiontothefollowingterms.
Except as otherwise noted, all CK-12 Content (including
CK-12 Curriculum Material) is made available to Users
in accordance with the Creative Commons Attribution/Non-
Commercial/Share Alike 3.0 Unported (CC BY-NC-SA) License
(http://creativecommons.org/licenses/by-nc-sa/3.0/), as amended
and updated by Creative Commons from time to time (the “CC
License”),whichisincorporatedhereinbythisreference.
Completetermscanbefoundathttp://www.ck12.org/terms.
Printed: August16,2012
iii
Contents www.ck12.org
Contents
1 Introduction 1
1.1 MetricUnits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.2 UnitConversions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
1.3 Vectors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
1.4 ScientificMethod . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
1.5 DevelopmentofHypotheses . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
1.6 ObservationsandExperiments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
1.7 DevelopmentofTheories . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
1.8 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
2 Kinematics 26
2.1 UsingtheKinematicEquations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
2.2 PositionandDisplacement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.3 RelativeVelocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
2.4 AverageVelocity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
2.5 VelocityandAcceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
2.6 GraphingMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3 Newton’sLawsofMotion 47
3.1 PressureandForce. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.2 Newton’sFirstLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.3 Newton’sSecondLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52
3.4 FreeBodyDiagrams. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5 ProblemSolving1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59
3.6 TypesofForces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
3.7 Newton’sThirdLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4 Fields 75
4.1 UniversalLawofGravity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
4.2 GravityandSpaceProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
4.3 Electrostatics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Coulomb’sLaw . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
4.5 ElectricFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.6 Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99
4.7 MagneticFields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104
4.8 LorentzForce . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
5 WorkandEnergy 113
5.1 Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114
5.2 MechanicalAdvantage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.3 PotentialEnergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
5.4 KineticEnergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
iv
www.ck12.org Contents
5.5 ConservationofEnergy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
5.6 EnergyProblemSolving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129
5.7 PowerandEfficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
6 Momentum 136
6.1 Momentum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137
6.2 Impulse . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
6.3 ElasticCollisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144
6.4 InelasticCollisions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
6.5 EnergyandMomentumProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
7 PeriodicMotion 153
7.1 PeriodandFrequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 154
7.2 AngularSpeed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
7.3 CircularMotion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
7.4 CentripetalAcceleration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 163
7.5 CentripetalForceProblems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
7.6 Springs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
7.7 Pendulum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
8 Waves 175
8.1 TypesofWaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176
8.2 WaveEquation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 178
8.3 StandingWaves . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181
8.4 DopplerEffect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 185
8.5 SpeedofLight . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 187
8.6 ElectromagneticSpectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
8.7 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192
9 Thermal 193
9.1 Temperature . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
9.2 SpecificHeatandPhaseChange . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
10 PrinciplesofSimpleHarmonicMotion 204
v
www.ck12.org Chapter1. Introduction
C 1
HAPTER
Introduction
Chapter Outline
1.1 METRIC UNITS
1.2 UNIT CONVERSIONS
1.3 VECTORS
1.4 SCIENTIFIC METHOD
1.5 DEVELOPMENT OF HYPOTHESES
1.6 OBSERVATIONS AND EXPERIMENTS
1.7 DEVELOPMENT OF THEORIES
1.8 REFERENCES
1
1.1. MetricUnits www.ck12.org
1.1 Metric Units
Studentswilllearnaboutthemetricsystemandhowtoconvertbetweenmetricunits.
Studentswilllearnaboutthemetricsystemandhowtoconvertbetweenmetricunits.
FrequentlyUsedMeasurements,GreekLetters,andPrefixes
Measurements
TABLE 1.1: TypesofMeasurements
Typeofmeasurement Commonlyusedsymbols Fundamentalunits
lengthorposition d,x,L meters(m)
time t seconds(s)
velocityorspeed v,u meterspersecond(m/s)
mass m kilograms(kg)
force F Newtons(N)
energy E,K,U,Q Joules(J)
power P Watts(W)
electriccharge q,e Coulombs(C)
temperature T Kelvin(K)
electriccurrent I Amperes(A)
electricfield E NewtonsperCoulomb(N/C)
magneticfield B Tesla(T)
Prefixes
TABLE 1.2: PrefixTable
SIprefix InWords Factor
nano(n) billionth 1∗10−9
micro(µ) millionth 1∗10−6
milli(m) thousandth 1∗10−3
centi(c) hundreth 1∗10−2
deci(d) tenth 1∗10−1
deca(da) ten 1∗101
hecto(h) hundred 1∗102
kilo(k) thousand 1∗103
mega(M) million 1∗106
giga(G) billion 1∗109
GreekLetters
TABLE 1.3: FrequentlyusedGreekletters.
µ“mu” τ“tau” Φ“Phi”∗ ω“omega” ρ“rho”
θ“theta” π“pi” Ω“Omega”∗ λ“lambda” Σ“Sigma”∗
2
www.ck12.org Chapter1. Introduction
TABLE 1.3: (continued)
µ“mu” τ“tau” Φ“Phi”∗ ω“omega” ρ“rho”
α“alpha” β“beta” γ“gamma” ∆“Delta”∗ ε“epsilon”
Two very common Greek letters are ∆ and Σ . ∆ is used to indicate that we should use the change or difference
betweenthefinalandinitialvaluesofthatspecificvariable. Σdenotesthesumornetvalueofavariable.
Guidance
• Everyanswertoaphysicsproblemmustincludeunits. Evenifaproblemexplicitlyasksforaspeedinmeters
persecond(m/s),theansweris5m/s,not5.
• Ifaunitisnamedafteraperson, itiscapitalized. Soyouwrite“10Newtons,”or“10N,”but“10meters,”or
“10m.”
• Metric units use a base numbering system of 10. Thus a centimeter is ten times larger than a millimeter. A
decimeteris10timeslargerthanacentimeterandameteris10timeslargerthanadecimeter. Thusameteris
100timeslargerthanacentimeterand1000timeslargerthanamillimeter. Goingtheotherway,onecansay
thatthereare100cmcontainedinameter.
Example1
Question: Convert2500m/sintokm/s
Solution: Akm(kilometer)is1000timesbiggerthanameter. Thus,onesimplydividesby1000andarrivesat2.5
km/s
Example2
Question: Thelengthsofthesidesofacubearedoublingeachsecond. Atwhatrateisthevolumeincreasing?
Solution:Thecubesidelength,x,isdoublingeverysecond. Thereforeafter1seconditbecomes2x. Thevolumeof
thefirstcubeofsidexisx×x×x=x3. Thevolumeofthesecondcubeofside2xis2x×2x×2x=8x3. Theratio
ofthesecondvolumetothefirstvolumeis8x3/x3=8. Thusthevolumeisincreasingbyafactorof8everysecond.
WatchthisExplanation
MEDIA
Clickimagetotheleftformorecontent.
TimeforPractice
1. A tortoise travels 15 meters (m) west, then another 13 centimeters (cm) west. How many meters total has
shewalked?
3
1.1. MetricUnits www.ck12.org
2. Atortoise,Bernard,startingatpointAtravels12mwestandthen150millimeters (mm)east. Howfarwest
ofpointAisBernardaftercompletingthesetwomotions?
3. 80m+145cm+7850mm=X mm. WhatisX ?
4. Asquarehassidesoflength45mm. Whatistheareaofthesquarein mm2?
5. A square with area 49cm2 is stretched so that each side is now twice as long. What is the area of the square
now? Includeasketch.
6. Arectangularsolidhasasquarefacewithsides5cminlength,andalengthof10cm. Whatisthevolumeof
thesolidin cm3? Sketchtheobject,includingthedimensionsinyoursketch.
7. Asyouknow,acubewitheachside4minlengthhasavolumeof64m3. Eachsideofthecubeisnowdoubled
in length. What is the ratio of the new volume to the old volume? Why is this ratio not simply 2? Include a
sketchwithdimensions.
8. WhatistheratioofthemassoftheEarthtothemassofasingleproton? (Seeequationsheet.)
9. Aspacecraftcantravel20km/s. Howmanykmcanthisspacecrafttravelin1hour (h)?
Answers
1. 15.13m
2. 11.85m
3. 89,300mm
4. 2025mm2
5. 196cm2
6. 250cm3
7. 8:1,eachsidegoesupby2cm,soitwillchangeby23
8. 3.5×1051:1
9. 72,000km/h
4
www.ck12.org Chapter1. Introduction
1.2 Unit Conversions
Studentswilllearnhowtoconvertunitsfrommetrictoenglishsystemandviceverseusingdimensionalanalysis.
Studentswilllearnhowtoconvertunitsfrommetrictoenglishsystemandviceverseusingdimensionalanalysis.
KeyEquations
1meter=3.28feet
1mile=1.61kilometers
1lb. (1pound)=4.45Newtons
Guidance
• Thekeytoconvertingunitsistomultiplybyacleverfactorofone. Youcanalwaysmultiplyby1,becauseit
doesnotchangethenumber. Since1in. isequalto2.54cm,then1= 2.54cm = 1in . Thus,onecanmultiply
1in 2.54cm
bythisformof1inordertocancelunits(seevideobelow).
• Writeouteverystepandshowallyourunitscancellingasyougo.
• When converting speeds from metric to American units, remember the following rule of thumb: a speed
measured in mi/hr is about double the value measured in m/s (i.e., 10m/s is equal to about 20 MPH).
Rememberthatthespeeditselfhasn’tchanged,justourrepresentationofthespeedinacertainsetofunits.
• When you’re not sure how to approach a problem, you can often get insight by considering how to obtain
the units of the desired result by combining the units of the given variables. For instance, if you are given a
distance(inmeters)andatime(inhours),theonlywaytoobtainunitsofspeed(meters/hour)istodividethe
distancebythetime. Thisisasimpleexampleofamethodcalleddimensionalanalysis,whichcanbeusedto
findequationsthatgovernvariousphysicalsituationswithoutanyknowledgeofthephenomenathemselves.
Example1
Question: 20m/s=? mi/hr
Solution:
20m/s(1mi/1600m)=.0125mi/s
.0125mi/s(60s/min)=.75mi/min
.75mi/min(60min/hr)=45mi/hr
WatchthisExplanation
5
Description:magnetic field. B . The first new concept introduced here is that of a vector: a scalar magnitude with a . A flow chart of how science works that is much more accurate than the . “My theory on why she doesn't want to go out with him any more is that he tion of Oceanography (scrippsco2.ucsd.edu/)