Table Of ContentRESEARCHARTICLE
Mechanism of Focal Adhesion Kinase
Mechanosensing
JingZhou1☯,CamiloAponte-Santamaría1☯,SebastianSturm2,JakobTómasBullerjahn2,
AgnieszkaBronowska1,FraukeGräter1,3*
1HeidelbergInstituteforTheoreticalStudies,Heidelberg,Germany,2LeipzigUniversity,Institutefor
TheoreticalPhysics,Leipzig,Germany,3InterdisciplinaryCenterforScientificComputing(IWR),Heidelberg
University,Heidelberg,Germany
☯Theseauthorscontributedequallytothiswork.
a11111 *[email protected]
Abstract
Mechanosensingatfocaladhesionsregulatesvitalcellularprocesses.Here,wepresent
resultsfrommoleculardynamics(MD)andmechano-biochemicalnetworksimulationsthat
OPENACCESS
suggestadirectroleofFocalAdhesionKinase(FAK)asamechano-sensor.Tensileforces,
Citation:ZhouJ,Aponte-SantamaríaC,SturmS, propagatingfromthemembranethroughthePIP bindingsiteoftheFERMdomainand
2
BullerjahnJT,BronowskaA,GräterF(2015)
fromthecytoskeleton-anchoredFATdomain,activateFAKbyunlockingitscentralphos-
MechanismofFocalAdhesionKinase
phorylationsite(Tyr576/577)fromtheautoinhibitoryFERMdomain.Varyingloadingrates,
Mechanosensing.PLoSComputBiol11(11):
e1004593.doi:10.1371/journal.pcbi.1004593 pullingdirections,andmembranePIP concentrationscorroboratethespecificopeningof
2
theFERM-kinasedomaininterface,duetoitsremarkablylowermechanicalstabilitycom-
Editor:PeterMKasson,UniversityofVirginia,
UNITEDSTATES paredtotheindividualalpha-helicaldomainsandthePIP -FERMlink.Analyzingdown-
2
streamsignalingnetworksprovidesfurtherevidenceforanintrinsicmechano-signalingrole
Received:June5,2015
ofFAKinbroadcastingforcesignalsthroughRastothenucleus.ThisdistinguishesFAK
Accepted:October12,2015
fromhithertoidentifiedfocaladhesionmechano-responsivemolecules,allowinganew
Published:November6,2015
interpretationofcellstretchingexperiments.
Copyright:©2015Zhouetal.Thisisanopen
accessarticledistributedunderthetermsofthe
CreativeCommonsAttributionLicense,whichpermits
unrestricteduse,distribution,andreproductioninany
AuthorSummary
medium,providedtheoriginalauthorandsourceare
credited.
Focaladhesionsintegrateexternalmechanicalsignalsintobiochemicalcircuitsallowing
DataAvailabilityStatement:Allrelevantdataare cellularmechanosensing.Althoughthezooofmechanosensingproteinsatfocaladhesions
withinthepaperanditsSupportingInformationfiles.
issteadilygrowing,force-inducedenzymaticmechanisms,asthoseuncoveredforautoin-
Funding:FundingfromtheKlausTschiraFoundation hibitedkinasesinmuscle,remaintobeidentifiedforfocaladhesiondownstreamsignaling.
(toJZandFG),theBMBFSYSTECprogramme(to Here,weprovideevidencethatfocaladhesionkinase(FAK)canactasadirectmechano-
JZandFG),theDeutscheForschungsgemeinschaft
enzymeatfocaladhesions,usingmoleculardynamicssimulationsandkineticmodelling.
(DFG)researchgroupFOR1543(toCASandFG),
WeshowthatanchorageofFAKtothemembraneviaPIP-2iscriticalforthismechanical
andtheBIOMSprogrammeatHeidelbergUniversity
activation.Ourresultssuggestsimilarmechanismstobeatplayforothermembrane-
(toAB)isgratefullyacknowledged.JTBandSS
acknowledgefinancialsupportfromtheEuropean boundautoinhibitedkinases.
UnionandtheFreeStateofSaxony,andtheDFG
throughFOR877andtheLeipzigSchoolofNatural
Sciences-BuildingwithMoleculesandNano-objects
(BuildMoNa).Thefundershadnoroleinstudy
PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 1/16
FAKMechanosensing
design,datacollectionandanalysis,decisionto Introduction
publish,orpreparationofthemanuscript.
Focaladhesions(FAs)actaskeycellularlocationsformechanosensingbyintegratingmechani-
CompetingInterests:Theauthorshavedeclared
calandbiochemicalsignalsbetweentheoutsideandinsideofthecell,therebyregulatingpro-
thatnocompetinginterestsexist. cessessuchascellproliferation,motility,differentiation,andapoptosis[1–3].Theycontain
numerousadapteroranchorproteins,whichestablishthemechanicallinkofthecytoskeleton
withtheextracellularmatrix[4].Someoftheseproteinshavebeenidentifiedasmechano-
responsiveelements[5–7].
FocalAdhesionKinase(FAK)centrallyregulatesFAsbyestablishingadhesiveinteractions
atthecellperiphery[8].Actingasasignalinghubbetweenintegrinandmultipleproteinspar-
ticipatingindownstreamsignalingpathways,itcarriesoutdiversefunctionsinembryonic
development,cellmigration,andsurvival,anditsmalfunctionisassociatedwithcancerpro-
gressionandcardiovasculardiseases[9,10].FAKcomprisesacentraltyrosinekinasedomain
flankedbytwolargenon-catalyticdomains:FERMandFAT(Fig1A).TheN-terminalthree-
lobed4.1ezrinradixinmoesin(FERM)homologydomainisconnectedtothekinaseN-lobe
Fig1.MechanicalactivationofFK-FAK.A)DomainorganizationofFAKanditsrelativepositionatthecell
peripheryinthecytosol.Thekinasedomain(orange)containsthelobesNandCandtheFERMdomain
(blue)consistsoflobesF1–3,withF2bindingtoPIP lipids(red)concentratedattheinnerleaflet(IL)ofthe
2
membrane(grey).ThemajorphosphorylationsiteTyr576/577(magentastar),locatedattheactivationloop
(green)inthekinasedomain,isautoinhibitedbytheFERMdomain.TheautophosphorylationsiteTyr397
(greystar)ispositionedintheloopconnectingthekinaseandFERMdomains(grey).TheFATdomain(violet)
isnotconsideredinourstudy.B)StretchingforceappliedtothebasicpatchinFERMandthekinaseC-
terminalresidue(red),informofvirtualsprings,inducesFERM-kinasedissociation.Representative
structuresofFAKinitsinitialautoinhibitedconformation(1),afterdissociationofthekinaseC-lobefromthe
FERMF2lobe(2),andafterTyr576/577releaseandpartialC-terminalunfolding(3)areshown.Color-code
andorientationoftheproteinasinA.C)Cumulativenumberofdissociationeventsasafunctionofthe
distancebetweenthepulledelementsatthemomentofdissociation(De−e).Thisindicatestheextentof
unfoldingpriordissociation.Twoeventsweremonitored:dissociationofthetheFERMF2lobefromthe
kinaseC-lobe,F2-C(transitionfrom(1)to(2)inB),andseparationofFERMdomainfromtheTyr576–577
phosphorylationsite,F-YY(transitionfrom(2)to(3)inB).Totalnumberofsimulations(83)isindicatedwith
thedashedline.
doi:10.1371/journal.pcbi.1004593.g001
PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 2/16
FAKMechanosensing
througha50-residuelinker.TheC-terminalFAT(focaladhesiontargeting)domainfollowsa
220-residuelongproline-richanddisorderedlinker,throughwhichitisconnectedtothe
kinaseC-lobe.TheactivationofFAKfirstrequiresautophosphorylationofTyr397,which
offersaSrchomology2(SH2)bindingsite.SrcbindingtoFAKincreasesSrckinaseactivity,
inducingthephosphorylationofTyr576/577withinthekinasedomainactivationloop[11].
ThisisneededformaximalFAK-associatedactivityandleadstotheformationofaSrc-FAK
complex,whichtriggerssubsequentphosphorylationsintheFATdomainandbindingof
downstreamsignalingproteins[12].TheFERMdomainauto-inhibitsthekinasedomainby
blockingtheTyr576/577phosphorylationsite[13,14].Exposureofthissiteisanessentialstep
topermititsphosphorylation,andtherebyrendermaximumFAKactivity.
FAKlocatesatsitesofintegrinclusteringthroughprotein-proteininteractionsofitsFAT
domain,whichcontainsbindingsitesforintegrin-andactin-associatedproteins[4,15].Integ-
rinsignalingandinteractionswithgrowthfactorreceptorsweredeterminedasFAKactivators
[16,17].Recentstudiesprovidedevidencethatphosphoinositidephosphatidylinsositol-
4,5-bis-phosphate(PIP )iscriticalforefficientFAKactivationandautophosphorylation[18,
2
19].PIP ,aubiquitoussecondmessengerenrichedintheinnerleafletoftheplasmamembrane
2
andconcentratedatFAs,regulatestheinteractionofcytoskeletalproteinswiththemembrane
[20,21].PIP interactsdirectlywiththebasicpatch(216KAKTLR221)intheFERMdomain[18,
2
19],whichinducesconformationalchangesinFAK.TheglobalconcentrationofPIP inthe
2
cellmembraneisonlyapproximately1%[22].However,PIP -proteininteractions[22,23]or
2
divalentions,suchasCa2+,[24,25]canleadtolocalPIP2accumulation.Localizedincrements
ofCa2+werealsosuggestedtoincreasetheresidencyofFAKatFAs[26].
EvidenceforadecisiveroleofFAKinmechanotransductionissteadilygrowing[27].FAK
isrecruitedtotheleadingedgeandphosphorylatedinmigratingcellsundershearstress[28,
29].Ithasalsobeenshowntomediateforce-guidedcellmigration[30,31]aswellasstrain-
inducedproliferation[32].Recently,themechano-sensitivityofFAKhasbeenascribedtothe
force-sensingfibronectin-integrinlink[33].However,untilnow,theavailabledataon
mechano-sensingthroughFAKisindirect.ItremainsunknownifFAKonlyliesdownstream
ofmechano-sensingprocessessuchasthoseinvolvingintegrins,orifFAKisalsoperse
exposedtoandactivatedbymechanicalforce.
WeherehypothesizethatmechanicalforceactsasadirectstimulusofFAKactivity,indica-
tionsforwhicharetwo-fold.First,FAKistetheredbetweenthePIP -enrichedmembraneand
2
thecytoskeleton,likelyactingasaforce-carryinglinkinFAs.Second,theFERM-kinasestruc-
turesuggestsitselfasamechano-responsivescaffold,inwhichforcecouldspecificallydetach
theautoinhibitoryFERMdomainfromtheactivesite.FAKwouldbethefirstmechanoenzyme
ofFAs,allowingadirecttransductionofamechanicalsignalintoanenzymaticreactionand
downstreameventsintothenucleus,whichwouldyieldamechanisticexplanationofFAK’s
mechano-sensingrole[10].Indeed,twoanalogouscasesofmechanicallyactivatedenzymes
havebeenpreviouslyidentified,bothofwhicharekinasesandfeatureforce-inducedactivation
byremovalofanautoinhibitorydomain,namelytitinandtwitchinkinaseinmuscle[34–36].
IncontrasttotheFATdomain[37],theforceresponseoftheautoinhibitedFERM-kinasefrag-
mentiscurrentlyunknown.TotestthehypothesisofFAKasaforce-sensor,weperformed
extensiveequilibriummoleculardynamics(MD)andforce-probemoleculardynamics
(FPMD)simulationsoftheFERM-kinasefragmentofFAKundervariousconditions.Force
propagatingontoFAKfromaPIP -enrichedmembraneandthecytoskeletonspecifically
2
opensthehydrophobicFERM-kinaseinterface,preparingFAKforactivationviaphosphoryla-
tionpriortotheunfoldingofthekinasedomain.Giventhelowstabilityofthelargelyα-helical
kinaseandFERMdomains,thisisremarkable.Theenforcedactivationisrobustwithregardto
PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 3/16
FAKMechanosensing
alargerangeofpullingvelocities,butsensitivetothesiteofforceapplication.Ourforce-
inducedactivationpathwaysuggestsadirectmechanoenzymaticfunctionofFAKinFAs.
MaterialsandMethods
EquilibriumMDsimulationsoftheFERM-kinasefragment(FK-FAK)fragment[14](PDB
code:2J0J)intheapostate,bothintheabsenceandinthepresenceofamembranecontaining
PIP andPOPElipids,aswellasofonlythemembrane,wereperformedusingtheGROMACS
2
package[38].FPMDsimulations[39,40]ofFK-FAKwithoutamembranewereperformedby
subjectingtheC-terminalC-alphaatomandthecenter-of-massoftheC-alphaatomsofthe
basicpatch216KAKTLR221toharmonic-springpotentialswhichweremovedawayfromeach
otherwithconstantvelocity.FAThasbeensuggestedtointeractwithFERM,bindingtothe
samesiteasPIP2does[41].However,PIP2bindingisrequiredforFAKactivation[18,19],
thusexcludingthepossibilityofFAT-FERMstableinteractionsforPIP2-mediatedFAKactiva-
tion.OtherinteractionsbetweenFATandtheFERM/Kinasecomplexarenotknownoratleast
suggestedtobeverydynamicandweak[42],andtherebyeasiertobreakunderforcecondi-
tions.Thissuggeststhatundertensileforce,FATismaintainedsufficientlyfarfromthecom-
plex,andthattheforceistransducedtowardsthecomplexthroughthefully-stretched200
amino-acidproline-richdisorderedlinker.Inconsequence,inourFPMDsimulationsneither
FATnorthelinkerwereconsidered.
Theforceresponseofmembrane-boundFK-FAKwasinvestigatedbysubjectingitsC-ter-
minustoaharmonicpotentialthatwasthenmovedawayfromthemembraneeithervertically
ordiagonally,whilekeepingthemembranepositionatitsoriginalposition.PLS-FMA[43]was
usedtodetectcollectivemotionsmaximallycorrelatedwiththeopeningoftheFERM-kinase
interface.Theunderlyingfreeenergylandscapewascharacterizedbyanalyzingtherupture
forcesasafunctionofloadingrate,usingboththeHSmodelbyHummer&Szabo[44]andthe
BSKmodelbyBullerjahnetal.[45].Kineticmodelswerebasedonpreviousbiochemicalnet-
works[46–49]andsimulatedusingCOPASI[50].DetailsofthemethodsaregiveninS1Text.
Results
Force-inducedreleaseofFAKautoinhibition
Invitro,phosphorylationoftheactivationloopofFAKisenhancedbyrelievingtheautoinhibi-
tionthroughY180/M183mutation[14]orPIP -binding[18].Catalyticturnoverofwild-type
2
FAK,however,requiresanadditionalbiochemicalstimulus.Here,weaskifmechanicalforce
couldpromotefulldomaindissociationofFAKasrequiredforauto-andSrc-phosphorylation–
analogoustotheeffectoftheY180/M183mutation.Weexaminedtheeffectoftensileforceon
theautoinhibitedFK-FAKusingFPMDsimulations.TetheringFAKbetweenthemembrane
andthecytoskeletonresultsinforcetransmissionfromthemembraneontothebasicpatchof
theFERMdomainandfromthepaxillin-interactingFATdomainthroughtheproline-rich
linkerontothekinaseC-terminus(Fig1A).Accordingly,inoursimulations,apullingforcewas
appliedtothebasicpatchofFERMandtheC-terminusofthekinasedomaininoppositedirec-
tionswith13differentpullingvelocitiesfrom6×10−3nm/nsto1nm/ns(1inFig1B).Foreach
pullingvelocity,multiplerunswerecarriedout(83runsintotal),yieldingaconcatenatedsimu-
latedtimeofabout7μs,withtheslowestpullingsimulationcovering1μs.Weobservedthe
autoinhibitoryFERMdomaintodissociatefromthekinasedomainin76outof83FPMDsimu-
lations(morethan90%ofthecases).ConformationaldamageofeithertheFERMF2-lobeor
kinaseC-lobeoccurredintheremaining7simulations.ReleaseofTyr576/577fromFERM
occurredalwayslater,i.e.atlargerend-to-enddistances,thandissociationoftheF2-lobefrom
theC-lobe(Fig1Band1C),suggestingtheF2-Cdetachmenttobearequirementformechanical
PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 4/16
FAKMechanosensing
FAKactivation.WeobservedpartialunfoldingatthekinaseC-terminuspriortoexposureof
Tyr576/577toanonlyminorextentandmostlyathigherloadingrates,comprisingatmosta15
nmincreaseinend-to-endlength(Fig1Band1C),ornomorethan30residuesoftheC-termi-
nalα-helix(S1Fig).Asthesecondhalfofthishelix(ormore)istypicallydisorderedinother
kinases(e.g.inproteinkinaseAorSrc),itspartialunfoldingunderforceislikelynottoimpair
FAKenzymaticfunction.Hence,ourdatasuggestdomain-domaindissociationtolargelythwart
theunfoldingofthemoderatelystableα-helicaldomainstructures.However,moresubstantial
unfoldingfromtheC-terminusofthekinasedomainwasthedominantpathwaywhenpulling
FK-FAKfromitsNandC-terminus(S2Fig).Thus,weconcludethatforceactingspecifically
betweentheFERMbasicpatchandthekinaseC-terminusremovestheinhibitoryFERMdomain
andtherebyfacilitateskinaseactivation,insteadofdomainunfoldingandkinaseinactivation.
FAK-membraneinteractionsunderforce
AtFAs,thespecificinteractionoftheFERMbasicpatchwithPIP2isrequiredfortheanchor-
ingofFK-FAKtothemembrane.Otherphospholipidsonlydisplaybackgroundlevelsofbind-
ing[18].Inourpreviousstudy,weobservedanallostericchangeattheFERM-kinaseinterface
uponPIP bindingtoFK-FAK,butnofullopening[18].Thisraisedthequestioniffulldomain
2
openingunderforce,asobservedforisolatedFK-FAKinsolution,alsooccurswhenFK-FAKis
anchoredtoamembraneviaPIP .ThiswouldrequireboththePIP -containingmembraneas
2 2
wellasthePIP -FERMlinktobemechanicallymorerobustagainstrupturethantheFERM-
2
kinaseinteraction.Totestthis,wesetupapalmitoyloleoylphosphatidylethanolamine(POPE)
membranecontaining15%(mol/mol)ofPIP intheinnerleafletofthemembrane,whichwas
2
surroundedbywaterandneutralizedbyCaCl .Within100nsofMDsimulationsstarting
2
fromindividualPIP moleculesinthemembrane,weobservedtheformationofsmallPIP
2 2
clustersinvolvingtwoormorelipidsandCa2+(S3Fig),accompaniedbyadecreaseofareaper
lipidby*1Å2(S1Table),inagreementwithdivalent-cation-mediatedPIP -enrichmentin
2
membranes[18,24,51].FK-FAKwasanchoredtothemembraneandthedynamicsofthe
resultingcomplexwasmonitoredover150nsofMD.Anchoragefurtherincreasedclustering.
TheproteinremainedstablyboundtothemembranethroughtheFERM-PIP andadditional
2
interactionsbetweenthekinaseC-lobeandthemembrane,independentfromtheinitialorien-
tationoftheproteinrelativetothemembraneplane(Fig2AleftandS3Fig).Thesamewas
observedforamembranewith1%PIP ,which,however,showedlessclusteringandprovided
2
onlyasinglePIP lipidforanchorageofFK-FAK.
2
Next,wemonitoredthemechanicalresponseofmembrane-anchoredFK-FAK.InFPMD
simulations,wesubjectedtheproteintoforcebymovingaharmonicspringattachedtothe
kinaseC-terminuswithconstantvelocityalongadirectionverticalordiagonaltothemem-
brane,whilepositionrestrainingthecenter-of-massofthemembranebilayer(Fig2A).At15%
PIP concentration,independentofthepullingdirection,weobservedalossofcontactsofthe
2
kinasedomainwiththemembraneandwiththeFERMdomain,whiletheFERM-membrane
interactionremainedintact(Fig2B).Whilediagonalpullingledtoaconcurrentdissociationof
thekinasefromthemembraneandtheFERMdomain,verticalpullingresultedinkinase-mem-
branedissociationpriortokinase-FERMdissociation.Innoneofthesesimulations,we
observedkinaseunfoldingpriortodissociation.Also,forbothpullingdirections,themem-
braneandthePIP -FERMinteractionweremechanicallymorerobustthanthoseatthe
2
FERM-kinaseinterface.Thus,themembranesimulationsreproducedtheprocesspredomi-
nantlyobservedforisolatedFK-FAKinsolution(compareFig2BwithFig1Band1C).Namely,
theyallshowedforce-inducedremovaloftheautoinhibitoryFERMdomainandexposureof
theactivationloopcarryingtheTyr576/577phosphorylationsite.
PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 5/16
FAKMechanosensing
Fig2.MechanicalactivationofFAKboundtothemembrane.A)ForcewasappliedtotheC-terminusof
FK-FAK,inverticalordiagonaldirectionwithrespecttothemembrane,withacounter-forceactingonthe
membrane,leadingtothereleaseofautoinhibition(lefttorighttransition).FK-FAKisshownasinFig1B,PIP
2
lipidsinthemembrane(hereat15%)incyan/redandPOPElipidsingrey.B-C)NumberofcontactsN
betweentheFERMF2-lobe(F2)andthekinaseC-lobe(C)comparedtothenumberofcontactsbetween
bothlobesandthemembrane(mem),at15%(B)and1%(C)PIP concentration.Numberofcontacts
2
betweenlobeswasdefinedasthenumberofatomsinoneofthelobescloserthan0.6nmtoatleastone
atomoftheotherlobe.Upperpanelsshowresultsfordiagonalpullingwhilelowerpanelsforverticalpulling.
DensitiesofN(forapullingvelocityof0.03nm/ns)areshownasagreygradient,withapolynomialfittothe
datashownasasolidblackline.Thelabelsi,a,b,anducorrespondtotheinactive,active,boundand
unboundstatesofFK-FAK,respectively,sketchedattherightside.
doi:10.1371/journal.pcbi.1004593.g002
WhenweappliedforcetoFK-FAKanchoredtoamembranecontainingonly1%PIP ,i.e.
2
toasinglePIP molecule,detachmentofthekinasedomainfromthemembranewasfollowed
2
bythedetachmentofalsotheFERMdomain(Fig2C).Fulllossofmembraneanchoringnatu-
rallystopsforcetransmissionandimpedesactivation.Thus,aninteractionoftheFERMbasic
patchwithmultiplePIP ,whichislikelyinPIP -enrichedmembranes,isrequiredformechani-
2 2
calFK-FAKactivation.ThisisinlinewiththefactthatPIP5Koverexpressionincreasesand
PIP5KknockdowndecreasestheopenFAKconformation[19].Thepullingdirection,instead,
appearstobelessrelevant.
Mechanismofforce-inducedFK-FAKopening
Wenextanalyzedinfurtherdetailthedynamicsunderlyingtheforce-triggeredFK-FAK
domain-domainrupture.Applyingpartialleastsquaresfunctionalmodeanalysis(PLS-FMA)
[43]tothesimulationsofisolatedFK-FAKinsolution,weobtainedacollectiveopening
PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 6/16
FAKMechanosensing
motionthatmaximallycorrelateswiththeincreaseinminimaldistancebetweentheF2andC
lobes(S4Fig).ThisopeningmotionalsostronglycorrelatedwiththeF2-Clobedistances
obtainedforthetrajectoriesofmembrane-boundFK-FAK,suggestingthatitcapturesthe
essentialopeningdynamicsofFK-FAKbothisolatedandboundtothemembrane.Thisimplies
thesimplifiedsystemofisolatedFK-FAKinsolutiontofollowaFERM-kinasedissociation
mechanism,whichishighlysimilartotheoneofthemorerealisticsystemincludingthemem-
brane,eventhoughitlackseffectsfromFERM/kinase-membraneinteractions.
WethenidentifiedthefirststepsalongtheopeningmotionofFK-FAKgivingrisetorup-
tureforces.Fig3AshowstypicalforceprofilesandF2/C-lobeinteractionareasasafunctionof
thespringlocationsrecoveredfromtheFPMDsimulations.ForbothFK-FAKinisolationand
boundtothemembrane,andindependentoftheloadingrate,weobservedthattheinterface
areabetweenthetwolobeswasreducedintwosteps,bothofwhichcoincidedwithnoticeable
forcepeaks.Themaximalforcewasreachedwhenthefirstdecreaseininter-lobeareaoccurred
Fig3.MechanismofFK-FAKmechanicalactivation.A)InterfacialareabetweentheF2-andC-lobe(grey)
andaverageforceexertedbythetwosprings(blue)asafunctionofthedistancebetweensprings,D .
spring
ResultsfromsixindependentFPMDsimulationsareshown:(1–3)withoutthemembranepullingatV=0.006,
0.006and0.014nm/ns,respectively,and(4and5)pullingdiagonallyawayfromthemembraneatV=0.03and
0.05nm/ns,respectively.Theinterfacialareadropsfrominitialvaluesof3–4.5nm2tointermediatevaluesof
1.5–2.8nm2.Afterwardsitdecreasestozero.Ruptureforce(highestforcepeak)alwayscorrespondedtothe
firstdropintheinterfacialarea(redline).Thepeakforceassociatedtotheseconddropintheareais
highlightedwiththegreenline.B)DistributionofinterfaceareasreflectingthetwostatesofFK-FAKduringits
force-inducedopening(highlightedwitharrows).AllFPMDsimulationswereconsideredtocomputethe
distribution.C)Residuesinvolvedintherupturestepsarehighlightedassticks.FERMF2-andKinaseC-lobe
areshowninsurfacerepresentation.Rupturestepsareassociatedtothedisruptionofhydrophobic
interactions(green);saltbridges(blue)andotherelectrostaticinteractions(magenta),andinteractionswith
otherpartners(cyan).ResidueswereidentifiedbyTRFDA(S5Fig).TheyarelistedinS2Table.
doi:10.1371/journal.pcbi.1004593.g003
PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 7/16
FAKMechanosensing
(from3–4.5nm2to1.5–2.8nm2).Thisledtoashort-livedintermediate,asreflectedbyasec-
ondpeakinthedistributionoftheF2/C-lobeinterfacearea(Fig3B),beforethetwolobesfully
dissociated.Wenotethattheintermediatebecomeslessevidentforfasterpullingvelocities.
Topinpointtheload-carryingresidue-residueinteractionsacrosstheinterface,wecalcu-
latedthepunctualstressofeachresidue,usingtimeresolvedforcedistributionanalysis
(TRFDA)[52],andtherebydetectedthelossofinter-lobeinteractionsduringpulling(seeS5
Fig,S2Table,andS1Text).Inter-lobeinteractionswhichrupturedreproduciblyatoneofthe
twodissociationstepsarehighlightedinFig3C.Thefirstmajorrupturesteprequiredthe
breakupofahydrophobicclustercomposedofresiduesY180,M183,N193,V196,andF596,
andofanadditionalsaltbridge(D200-R598).Ruptureoftheseinteractionsgaverisetothe
maximalforce,thusstressingtheircriticalstabilizingrole.Ourresultsareinagreementwith
theobservationthatmutationsY180A,M183A,andF596DresultinconstitutivelyactiveFAK
withanopenFERM-kinaseinterface[14,18].Residuepairsrupturingatthesecondstep
includedresiduesofmostlyelectrostaticnature(E182,R184,K190andN595,N628,N629,
E636)andarelocatedfurtherawayfromthemembraneanchor.Thissecondrupturestepis
immediatelyfollowedbytheopeningoftheremainingFERM-kinaseinterfaceestablished
betweentheF1andtheN-lobe,includingtheexposureofTyr576/577.Thus,therupturepro-
cessresemblesazipper-likemechanism,duringwhichtheFERMandkinaseinterfaceis
sequentiallyopened.Herein,themembrane-proximalhydrophobicpatcharoundF596repre-
sentsthemostrobustmechanicalclamptobeopenedfirst.OurPLS-FMAcalculationsfurther
supportthissequentialmodeofopening(S4CFig).
ForcerequiredforFAKactivation
AretheforcespredictedbythesimulationstorelieveFAKautoinhibitionrelevanttoFAKat
FAs?Atthirteendifferentloadingrates,coveringtwoordersofmagnitude,weobtainedmaxi-
malruptureforcesforFK-FAKactivationbetween150and450pN(Fig4A).Thisforceregime
issimilartotheoneobservedfortitinkinase(400pNat0.2pN/ps),akinaseknowntobe
mechanicallyactivatedbyforcespresentinmuscle[35,36,53].Ourruptureforcesarealsosim-
ilartoorslightlyhigherthanthosepredictedbyMDsimulationsofthefocaladhesionproteins
talinandvinculin(250–400pNfornanosecondscaleactivationoftalin[54,55]and100pNfor
sub-nanosecondactivationofvinculin[56],respectively).WethenusedboththeHSmodel
[44]andtheBSKmodel[45]tofittheobservedruptureforcesasafunctionoftheloadingrate.
ThisprovideduswithasetofcompatiblemodelparametersΔG,Dandx ,whereΔGdenotes
b
theactivationenergy,Dtheeffectivediffusivityandx theseparationbetweentheinactivestate
b
andthetransitionstate.Focusingonthoseparametercombinationsthatcorrespondtoaphysi-
ologicallyplausiblespontaneousactivationrateofnomorethank =10−3Hz,weobtaineda
0
numberofbest-fitestimatesfromwhichwederivedtheforce-dependentactivationratek(F)
usedinourkineticmodel(Fig4AandS6Fig).Wenotethatmodelparameterscorresponding
toanunphysiologicallyhighspontaneousdissociationratecanimproveourfittotheobserved
forcefluctuations(S7andS8Figs).Onthisbasisitmightbespeculatedthatthereexistsasec-
ondenergybarrieratalargervalueofx thatguaranteesthermalstabilityatlowforces,but
b
vanishesunderthehighforcesusedinourMDsimulations.Nevertheless,thisdoesnotinvali-
dateourqualitativefindingsonFK-FAKactivationasforcesensitivityincreasesexponentially
withthebarrierlocationx (seetheS1Textforamoredetailedanalysis).
b
Discussion
Wehereprovidecomputationalevidenceforaforce-inducedactivationmechanismofFAK,in
whichtensileforcerelievestheblockageofitsactivesite,aswellasitscentralTyr576/577
PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 8/16
FAKMechanosensing
Fig4.FAKmechano-signaling.A)RuptureforceFasafunctionoftheloadingrateF_,whereFisdefinedasthemaximalforceobservedduringFK-FAK
activation(arrowintheinset).LightgreydotsrepresentindividualruptureforcesFobservedinourmembrane-freeFPMDsimulations.Darkgreydots
representtheiraverages(foreachloadingrateF_).ThesolidlineshowsthemeanruptureforcehFipredictedbytheBSKmodel[45]forΔG=28.5k T,x =
B b
0.86nm,andD=6.6×106nm2/s.AfitwiththeHS[44]modelyieldssimilarmodelparameters(notshown).Dashedlinesshowthevariationoftherupture
forcespredictedbytheBSKmodel(2standarddeviations,seeS1Textforadetailedanalysis).Pullingmembrane-boundFK-FAKdiagonallyyieldedsimilarly
largeruptureforces(greendots).Verticalpullingresultedinsignificantlylowerruptureforces(pinkdots),asthisdirectionpromotesthelessresistantzipper-
likedissociationmechanismdescribedinS4BandS4CFig)Timeatwhich50%ofinactiveFAK(B)andGDP-boundRasprotein(C)areconsumed,under
varyingexternalforce.Timesobtainedforthreesetsofparameters(1to3)correspondingtothethreefitspresentedinS6Fig.
doi:10.1371/journal.pcbi.1004593.g004
phosphorylationsite,imposedbytheautoinhibitoryFERMdomain.Thereleaseofautoinhibi-
tionislikelytomakethekinaseactivesiteaccessibleforitssubstrate,Tyr397ofthesameor
anotherFAKmolecule[42,57],and/ortorenderTyr576/577accessibletoSrc.Itisnon-trivial
thattheexertionofapullingforceatoppositesitesoftheFERMandkinasedomainsleadsto
theirdissociation.OtherlikelyscenariosareproteinunfoldingandPIP -proteindissociation,
2
bothofwhichwouldinactivateFAK,becauseanintactkinasestructureandalsoPIP binding
2
[18]arerequiredforFAKactivity.Infact,α-helicalproteinsareknowntounfoldatforcestypi-
callylowerthanβ-sheetproteins[58],andboththekinaseC-lobeandtheFERMF2domain
featuremainlyα-helicalsecondarystructure.Inthisregard,force-inducedFAKunfolding
wouldbeanexpectedresultandwasindeedpreferredoverFERM-kinasedissociationwhen
pullingtheFERMF1-orF3-lobeawayfromthekinaseC-terminus.Instead,intheparticular–
andphysiologicallyrelevant–casethatforceisappliedtothePIP bindingsiteandthekinase
2
C-terminus,wefounddomain-domaindissociationtobestronglypreferredoverunfoldingor
membranedetachment,overalargerangeofpullingvelocities,androbustwithregardtothe
pullingdirectionandpresenceofmembraneinteractions.Thus,theα-helicalregionssubjected
tothepullingforcemostlyrefrainfromunfolding,andtheyinsteadtransducetheloadtothe
F2/C-lobeinterface,whichreadilyopenspriortosubstantialkinaseunfolding.Wesuggestthat
itisthezipper-liketopology,withtheforceapplicationsitesbothlocatedatthemembrane-
proximalbasisofthetwodomains,thatmechanicallyweakensthedomaininterface,resulting
inefficientFAKopeningandactivation.Forcetransductionthroughthetwotermini,incon-
trast,resultsinshearingthetwodomainsrelativetoeachother,makingthemlesspronetodis-
sociate.Thelowermechanicalresistanceofzipperversusshear-typetopologieshasbeen
describedearlier(e.g.[53]),andFAKforce-induceddomain-domainruptureandactivation
appearstobeanothervariationofthistheme.
PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 9/16
FAKMechanosensing
Ourfindingsnotonlydecidedlyargueforamechano-sensingfunctionofFAK,butalso
emphasizethecrucialroleofthemembraneinmechanotransduction.First,membranebinding
allowsforcetopropagatetotheF2-lobeofFAK.Second,theFAK-membraneinteractionwith-
stoodtheexternalloadonlyinthecaseofPIP -enrichedmembranes(15%PIP ).Incontrast,
2 2
FAKdetachedfromlowPIP -contentmembranes.ThissupportsthenotionofPIP clustering
2 2
asarequirementforFAKactivationatFAs[18,51].WenotethatFAKcanbeactivatedinvitro
bythesoleactionofPIP andSrc,i.e.intheabsenceoftensileforcesactingonmembrane-
2
boundFAKatFAsinstretchedcells.However,ithasbecomeclearthatFAKactivationcan
proceedalongdifferentroutes,dependingonthecellularenvironment,andpotentiallycanalso
involvepHchanges[59],and/orgrowthfactorreceptors[16].Wehereproposeforcetosubsti-
tuteorcomplementsomeoftheseactivatorsshapingthemulti-dimensionallandscapeofFAK
activity.
UsingTRFDA,werecoveredthestabilizingroleofY180,M183,V196andF596,ahydro-
phobiccorepreviouslyshownbymutagenesistostabilizetheautoinhibitedstate[14],validat-
ingoursimulationdata.Inaddition,wefoundD200andR598tocontributetotherupture
force,andpredicttheirmutationtoresultinincreasedFAKactivity.
Thequestionarises,howforcefeedsintoFAK-mediatedRasGDP/GTPexchangeandregu-
latesERK-dependentgeneexpression,analogoustothechemicalstimulationofgrowthfactor
receptor-dependentRassignaling(S9Fig)[27].ToassesshowFAKasamechanosensorcou-
plesmechanicalsignalsintothedownstreambiochemicalnetwork,wedefinedforce-dependent
FAKactivationastheinitialstepofakineticmodelfortheRassignalingpathway(S10Fig)
[46–49].BothFAKopeningandGDP/GTPexchangeinRasareacceleratedbyexternalforces,
asexpected(Fig4Band4CandS11AFig).Intriguingly,whileFAKforce-inducedactivation
showsanearlylineardependencyonforceonthelogarithmicscale(Fig4B),Ras-GTPproduc-
tionshowsahighlynon-lineardependencyandsaturatesbeyondacriticalforce(Fig4C).The
reasonisthatactivatedFAKincomplexwithitspartners,Grb2andSOSviac-SrcandSHC,
actsasanenzymeforRasactivation.Asadirectconsequence,Rasactivationfollowsmechano-
enzymatickineticsreminiscentofaninhibitoryMichaelis-Mentenmechanisms(S11BFig)
[60],inwhichforceregulatestheenzymeconcentration.
Inconclusion,ourcomputationalstudyprovidesdirectevidenceatthemolecularlevelfora
mechano-sensoryroleplayedbyFAKatPIP -enrichedmembranesofFAs.Throughaspecific
2
domainopeningmechanismregulatedbyforce,FAKcanintegratemechanicalandchemical
stimuliintodownstreamsignalingtothenucleus.Wesuggestthemechano-enzymaticsofFAK
andRastoprovideacaponthecell’smechano-response.Ourresults,onFAKactivationand
signaling,aredirectlytestableamongothersbymolecularforcesensors[61,62]andcell
stretchingexperiments.Howotherputativelymechano-activatedkinases,suchastherelated
Srckinase,followsimilarmechanisms,atfocaladhesionsorelsewhere,remainstobeshown.
SupportingInformation
S1Fig.Partialunfoldingofthekinasedomain.A)Distancebetweenthepulledgroupsatthe
momentofdissociation(De−e)asafunctionoftheappliedloadingrate.Dissociationwasmoni-
toredbetweentheFERMF2-lobeandthekinaseC-lobe(F2-C)andbetweentheFERMdomain
andtheTyr576–577phosphorylationsite(F-YY).Eachdotcorrespondstoonesimulationrun
andthelineisapolynomialfittoallthepointsasaguidetotheeye,indicatingaslightaugment
inDe−ewithincreasingloadingrate.B)NumberofunstructuredresiduesNUNasafunctionof
thetime,forasimulationdisplayingalargeDe−evalue(circleinA).Timetraceisshownin
blackandapolynomialfitasaguidetotheeyeinblue.Residualunfoldingofaround30resi-
dueswasobservedattheC-terminus.Thenumberofunstructuredresidueswasobtainedusing
PLOSComputationalBiology|DOI:10.1371/journal.pcbi.1004593 November6,2015 10/16
Description:enzyme at focal adhesions, using molecular dynamics simulations and kinetic modelling. We show that Creative Commons Attribution License, which permits unrestricted Li S, Butler P, Wang Y, Hu Y, Han DC, Usami S, et al. The role of the . Bisswanger H. In: Enzyme Kinetics: Section 2.1–2.5.