Table Of ContentRESEARCHARTICLE
Elucidation of the Mode of Action of a New
Antibacterial Compound Active against
Staphylococcus aureus and Pseudomonas
aeruginosa
EvelienGerits1,ElineBlommaert1,AnnaLippell2,AlexJ.O’Neill2,BramWeytjens3,
DriesDeMaeyer3,AnaCarolinaFierro1,3,KathleenMarchal3,4,ArnaudMarchand5,
PatrickChaltin5,6,PieterSpincemaille7,KatrijnDeBrucker1,KarinThevissen1,BrunoP.
a11111 A.Cammue1,8,ToonSwings1,VeerleLiebens1,MaartenFauvart1,9,NatalieVerstraeten1,
JanMichiels1*
1 CentreofMicrobialandPlantGenetics,KULeuven,Leuven,Belgium,2 SchoolofMolecularandCellular
Biology,UniversityofLeeds,Leeds,UnitedKingdom,3 DepartmentofInformationTechnology(INTEC,
iMINDS),U.Ghent,Ghent,Belgium,4 DepartmentofPlantBiotechnologyandBioinformatics,U.Ghent,
Ghent,Belgium,5 CISTIMLeuvenvzw,Bio-Incubator,KULeuven,Leuven,Belgium,6 CentreforDrug
DesignandDiscovery(CD3),ResearchandDevelopment,KULeuven,Leuven,Belgium,7 Departmentof
OPENACCESS LaboratoryMedicine,UniversityHospitalsLeuven,Leuven,Belgium,8 DepartmentofPlantSystems
Biology,VIB,Ghent,Belgium,9 imec,SmartSystemsandEmergingTechnologiesUnit,DepartmentofLife
Citation:GeritsE,BlommaertE,LippellA,O’Neill ScienceTechnologies,Leuven,Belgium
AJ,WeytjensB,DeMaeyerD,etal.(2016)
ElucidationoftheModeofActionofaNew *[email protected]
AntibacterialCompoundActiveagainst
StaphylococcusaureusandPseudomonas
aeruginosa.PLoSONE11(5):e0155139. Abstract
doi:10.1371/journal.pone.0155139
Editor:MohamedN.Seleem,PurdueUniversity, Nosocomialandcommunity-acquiredinfectionscausedbymultidrugresistantbacteriarep-
UNITEDSTATES resentamajorhumanhealthproblem.Thus,thereisanurgentneedforthedevelopmentof
Received:October16,2015 antibioticswithnewmodesofaction.Inthisstudy,weinvestigatedtheantibacterialcharac-
teristicsandmodeofactionofanewantimicrobialcompound,SPI031(N-alkylated3,6-
Accepted:April25,2016
dihalogenocarbazol1-(sec-butylamino)-3-(3,6-dichloro-9H-carbazol-9-yl)propan-2-ol),
Published:May11,2016
whichwaspreviouslyidentifiedinourgroup.Thiscompoundexhibitsbroad-spectrumanti-
Copyright:©2016Geritsetal.Thisisanopen
bacterialactivity,includingactivityagainstthehumanpathogensStaphylococcusaureus
accessarticledistributedunderthetermsofthe
andPseudomonasaeruginosa.WefoundthatSPI031hasrapidbactericidalactivity(7-log
CreativeCommonsAttributionLicense,whichpermits
unrestricteduse,distribution,andreproductioninany reductionwithin30minat4xMIC)andthatthefrequencyofresistancedevelopmentagainst
medium,providedtheoriginalauthorandsourceare SPI031islow.ToelucidatethemodeofactionofSPI031,weperformedamacromolecular
credited.
synthesisassay,whichshowedthatSPI031causesnon-specificinhibitionofmacromolecu-
DataAvailabilityStatement:Theentiresetof larbiosynthesispathways.Liposomeleakageandmembranepermeabilitystudiesrevealed
RNAseqdataisavailablefromthepublicdatabase
thatSPI031rapidlyexertsmembranedamage,whichislikelytheprimarycauseofitsanti-
ArrayExpress(AccessionNumberE-MTAB-4691).
bacterialactivity.ThesefindingsweresupportedbyamutationalanalysisofSPI031-resis-
Funding:ThisworkwassupportedbytheEuropean
tantmutants,atranscriptomeanalysisandtheidentificationoftransposonmutantswith
Commission’sSeventhFrameworkProgramme(FP7/
2007-2013)underthegrantagreementCOATIM alteredsensitivitytothecompound.Inconclusion,ourresultsshowthatSPI031exertsits
(projectn°278425),theInteruniversityAttraction antimicrobialactivitybycausingmembranedamage,makingitaninterestingstartingpoint
PolesProgrammeinitiatedbytheBelgianScience
forthedevelopmentofnewantibacterialtherapies.
PolicyOfficeandbytheFWO(grantsG.0413.10,
G.0471.12N,G0B2515NtoJM).KTacknowledges
thereceiptofamandateofthe‘IndustrialResearch
PLOSONE|DOI:10.1371/journal.pone.0155139 May11,2016 1/17
ModeofActionoftheNewAntibacterialSPI031
Fund’ofKULeuven(IOFm/05/022).imecprovided Introduction
supportintheformofsalariesforauthorMF.The
Bacterialinfectionsareamongthemostseriousthreatstohumanhealth.Millionsofpeople
fundersdidnothaveanyadditionalroleinthestudy
design,datacollectionandanalysis,decisionto acquiresuchinfectionseachyear,leadingtoincreasedmortalityratesworldwideandaneco-
publish,orpreparationofthemanuscript.Thespecific nomicburdenonsociety[1].TheGram-positivepathogenStaphylococcusaureusisoneofthe
rolesoftheseauthorsarearticulatedinthe‘author majorcausesofnosocomialandcommunity-acquiredinfections[2].Thisbacteriumaccountsfor
contributions’section.
12.3%ofallnosocomialinfectionsinEurope,resultinginbacteremiaandsurgicalwoundinfec-
CompetingInterests:MFisaresearcheratimec. tions,andisthemaincauseofimplant-relatedinfections[3,4].Infectionscausedbycommunity-
Thisdoesnotaltertheauthors'adherencetoPLOS acquiredS.aureuscanrangefromminorskinandtissueinfectionstoprogressivepneumonia
ONEpoliciesonsharingdataandmaterials.
[5].Theemergenceofmethicillin-resistantS.aureushasseverelycomplicatedthetreatmentof
suchinfections.Currently,glycopeptideantibioticssuchasvancomycinareoftenusedtotreat
bothmethicillin-susceptibleandmethicillin-resistantinfections[6,7].However,inthepastfew
years,therehavebeenseveralreportsofvancomycin-resistantS.aureusinfections[8–10].
TheGram-negativebacteriumPseudomonasaeruginosaisanotherimportantpathogenthat
isfrequentlyinvolvedinnosocomialandcommunity-acquiredinfections[11].Thispathogen
isresponsiblefor8.9%ofinfectionsinEuropeanhospitalsandismostcommonlyfoundin
patientswithcancer,cysticfibrosisorburnwounds[3,11].Inaddition,P.aeruginosaisthe
maincausativeGram-negativeagentinimplant-relatedinfections[4].Community-acquired
infectionscausedbythispathogenincludeulcerativekeratitis,otitisexternaandskin/softtissue
infections[11].P.aeruginosainfectionsareusuallytreatedwithantibioticssuchasβ-lactams,
aminoglycosides,orquinolones[12].Alarmingly,multiplemultidrugresistantstrainsofP.aer-
uginosahaveemergedduringthelastyears,someofthemdisplayingresistanceeventowards
thelast-resortantibioticpolymyxinB[12,13].
Lately,ithasbecomeclearthatmultidrugresistanceisspreadingataveryfastrate[1].
Unfortunately,only5newclassesofantibioticsweremarketedsince2000,andmostofthese
donotworkagainstGram-negativepathogens[14].Thus,thereexistsapressingneedforthe
developmentofnewantibacterialagents.Recently,weidentifiedanewantibacterialcompound
SPI031(N-alkylated3,6-dihalogenocarbazol1-(sec-butylamino)-3-(3,6-dichloro-9H-carba-
zol-9-yl)propan-2-ol)(Fig1)withactivityagainstavarietyofbacteria,includingEscherichia
coliandthehumanpathogensS.aureus,P.aeruginosa,StaphylococcusepidermidisandPor-
phyromonasgingivalis[15].Inaddition,weshowedthatthecompounddisplaysantifungal
activityagainstCandidaalbicans[16].Furthermore,wedemonstratedthatSPI031hastheclin-
icalpotentialtobeusedasanantibacterialcoatingforimplants,therebyreducingtheincidence
ofimplant-associatedinfections[17].Inthepresentstudy,wefurtherinvestigatedtheantibac-
terialcharacteristics,includingbactericidalactivityandspontaneousresistancefrequency,and
modeofactionofSPI031usingS.aureusandP.aeruginosaasmodelpathogens.
Fig1.StructureofcompoundSPI031.
doi:10.1371/journal.pone.0155139.g001
PLOSONE|DOI:10.1371/journal.pone.0155139 May11,2016 2/17
ModeofActionoftheNewAntibacterialSPI031
MaterialandMethods
Bacterialstrainsandchemicals
S.aureusSH1000[18],P.aeruginosaPA14[19],KlebsiellapneumoniaeLMG2095,Acinetobac-
terbaumanniiNCTC13423,EnterobacteraerogenesLMG2094,EnterococcusfaeciumLMG
8148andStaphylococcusaureusATCC33591weregrownin1/20dilutedtrypticasesoybroth
(TSB,BectonDickinsonBenelux),TSB,lysogenybroth(LB)oronsolidTSBmediumcontain-
ing1.5%agarat37°C.
SPI031wassuppliedbyCD3(Leuven,Belgium)andstocksolutionsof10mMwerepre-
paredindimethylsulfoxide(DMSO).Vancomycin,polymyxinB,ofloxacin,tobramycin,cipro-
floxacin,rifampicin,tetracycline,SDS,TritonX-100andmelittinwerepurchasedfromSigma-
Aldrich.
MinimumInhibitoryConcentration(MIC)Assay
MICvaluesweredeterminedin1/20TSBwithabrothmicrodilutionprocedureaspreviously
described[20].AllMICvaluescalculatedinthepresentstudyarelistedinS1Table.
Time-killassay
S.aureusandP.aeruginosacellswereculturedtoexponentialphaseat37°Cin1/20TSBand
challengedwithantibacterialcompoundsat1xand4xMIC(seeS1Table).Atdifferenttime
points(0,0.1,0.5,1,2,3,4,5,24h),a200μlaliquotwasremovedfromeachsample,washed,
seriallydilutedinMgSO4(10mM)andplatedonTSBagarforenumerationofcolonyforming
units(CFU).
Spontaneousmutationfrequencytoresistance
ThespontaneousmutationfrequencyofS.aureusandP.aeruginosatoresistanceagainstdif-
ferentantibioticswasdeterminedbyplatingbacterialinocula(107−109CFU)onagarplates
containingantibioticsat5xMIC(seeS1Table).Thenumberofviablecellspresentintheinoc-
ulumwasdeterminedbyserialdilutionsondrug-freeagarplates.Themutationfrequencywas
calculatedbydividingthenumberofcoloniesformedontheplatesafter48hofincubationby
thenumberofcoloniesonthedrug-freeplates.Toconfirmtheresultsofthissingle-stepmuta-
tionprocedure,MICtestswereperformedforallresistantmutants.
Wholegenomesequencingofspontaneousresistantmutants
SpontaneousSPI031-resistantmutantsofP.aeruginosaweregeneratedasdescribedaboveand
threeindependentmutantswereselectedforfurtheranalysis.Resistanceofselectedmutants
wasverifiedbyMICdeterminations.Subsequently,genomicDNAfromP.aeruginosawild-
type(WT)andthespontaneousresistantmutantswasisolatedusingtheDNeasyBlood&Tis-
sueKit(Qiagen)followingthemanufacturer’sprotocol.DNAquantityandpuritywere
assessedusingaNanoDropND-1000.SamplesweresenttotheGenomicsCoreFacilityof
EMBL(Heidelberg,Germany)forwholegenomesequencingonanIlluminaHiSeq2000plat-
form.AssemblyofthereadsandfurtheranalysiswereperformedusingtheCLCGenomics
Workbenchprogramv8.0.Genomesequencesofspontaneousresistancemutantswerealigned
withthegenomesequenceoftheWTtodetectmutations.Acoverageabove10xandcutofffre-
quencyof75%wereconsideredforthedetectionofthemutations.Detectedmutationswere
verifiedbyPCRamplificationandSangersequencing.
PLOSONE|DOI:10.1371/journal.pone.0155139 May11,2016 3/17
ModeofActionoftheNewAntibacterialSPI031
Macromolecularsynthesisassay
SaturatedculturesofS.aureuswerediluted1/100inLBandgrowntoanOD of0.2at37°C.
600
withaeration.Cultureswerelabeledbytheadditionofeither[methyl-3H]thymidine,[5,6-3H]
uridineorL-[G-3H]glutamineat1μCi/mltomonitorsynthesisofDNA,RNA,orproteins,
respectively.After10minofincubationat37°C,100μlofeachculturewasmixedwith100μl
ofice-cold10%trichloroaceticacid(TCA)andstoredonice.Theremainderofeachculture
wasthentreatedwith4xMICofSPI031,ciprofloxacin,rifampicinortetracycline(seeS1
Table).After10minofincubation,100μlofthetreatedcultureswasmixedwithanequal
amountof10%TCAandkeptonicefor30min.TCAprecipitateswerecollectedundervac-
uumusinga96-wellfilterplate(96-wellUnifilterGF/B,Perkin-Elmer),andfiltersontowhich
[5,6-3H]uridine-labelledsampleshadbeendeposited,werewashedtwicewith100μlunlabeled
uridine.Individualfilterswerethenwashedtwicewith200μlof10%TCAeach,andtwicewith
200μlofaceticacid.Filterplatesweredried,25μlscintillant(Microscint20,Perking-Elmer)
wasaddedtoeachwell,andradiolabeledincorporationwasmeasuredusingaChameleonmul-
tilabelplatescintillationcounter(Hidex).
Carboxyfluoresceinleakageassay
Carboxyfluorescein(CF)loadedintoliposomesmatchingthelipidcompositionofthecyto-
plasmicmembraneofS.aureuswerepreparedasdescribedpreviously[21].Aliquots(5μl)of
theliposomesweremixedwith95μlliposomebuffer(10mMHEPES,107mMNaCl,pH7.4)
containingSPI031atafinalconcentrationequivalentto1xMICand4xMICagainstS.aureus
SH1000(seeS1Table).Sampleswereincubatedat37°CwhileshakingandCFrelease(λ =
ex
485nm,λ =520nm)wasmeasured10,60and180minafterincubationusingaFLUOstar
em
omegaplatereader(BMGLabtech).Thepercentageofliposomeintegrityaftertreatmentwas
determinedrelativetotheamountofCFreleaseaftertreatmentoftheliposomeswith0.5%Tri-
tonX-100(correspondingto0%liposomeintegrity).
Membranepermeability
SPI031-mediatedpermeabilizationofthecytoplasmicmembraneofbothS.aureusandP.aeru-
ginosawasmeasuredusingSYTOXgreen(Invitrogen,USA)aspreviouslydescribed[22],with
somemodification.Exponential-phasecellsofS.aureusandP.aeruginosagrownin1/20TSB
werewashedandresuspendedinphosphate-bufferedsalinetoanOD of0.5.Cellswere
595
stainedwith1μMofSYTOXgreendyeandtreatedwithSPI031(0x,0.25x,0.5xand1xMIC;
seeS1Table).Afteraperiodofincubation(30minforS.aureus,15minforP.aeruginosa),
fluorescencewasmeasured(λ =504nm,λ =523nm)usingaSynergyMXmultimode
ex em
reader.
OutermembranepermeabilityofP.aeruginosawasassessedusingthehydrophobicfluores-
centprobe1-N-phenylnaphthylamine(NPN,Sigma,USA)aspreviouslydescribed[23],with
minormodifications.Briefly,P.aeruginosacellsweregrowntoexponentialphasein1/20
TSB,washedandresuspendedtoanOD of0.5inbuffercontaining5mMHEPES,pH7.2.
595
CellsweremixedwithNPNtoafinalconcentrationof10μMandtreatedwithSPI031(0x,
0.25x,0.5xand1xMIC;seeS1Table).Increaseoffluorescencewasmeasuredimmediately
(λ =350nm,λ =420nm)usingaSynergyMXmultimodereader(Biotek,Winooski,VT)
ex em
at37°C.
FluorescencevaluesweredividedbycorrespondingOD valuestocorrectforcelldensi-
595
ties.Inaddition,valueswerecorrectedforbackgroundfluorescencebysubtractingthevalues
oftheuntreatedcontrolculturesstainedwithNPNorSYTOXgreen.
PLOSONE|DOI:10.1371/journal.pone.0155139 May11,2016 4/17
ModeofActionoftheNewAntibacterialSPI031
Fluorescencemicroscopy
Exponential-phasecellsofS.aureusandP.aeruginosagrownin1/20TSBweretreatedfor5
minwith0.5%DMSO(solventcontrol)orwith1xMICofSPI031(seeS1Table),centrifuged
andstainedwith10μg/mlN-(3-triethylammoniumpropyl)-4-(p-diethylaminophenyl-hexa-
trienyl)pyridiniumdibromide(FM4–64,MolecularProbes).Sampleswerespottedon2%
agarosepadsforimaging.ImageswerecapturedusingaZeissAxioimagerZ1fluorescence
microscopeequippedwithaECPlan-Neofluar100xobjective,usingtheFM4–64channel
(λ =540–580nm;λ =593–668nm).
ex em
RNAsequencinganddataanalysis
OvernightculturesofP.aeruginosawerediluted1/100in1/20TSBandweregrownfor3h
untillate-exponentialphase.Next,cellsweretreatedfor5minwith0.2xMICofSPI031(seeS1
Table)or1%DMSO(solventcontrol).Foreachcondition,threebiologicalrepeatsweresam-
pled.TotalRNAisolationwasperformedaspreviouslydescribed[20].Subsequently,rRNA
wasdepletedusingtheRibo-ZerorRNARemovalKit(Illumina)aspermanufacturer’sinstruc-
tions.RNAintegritywasanalyzedusingExperionRNAStdSensChips(Bio-Rad).RNAquan-
tityandpuritywasassessedusingaNanoDropND-1000spectrophotometer.Sampleswere
senttotheGenomicsCoreFacilityofEMBL(Heidelberg,Germany)forlibraryconstruction
andRNAsequencingusingtheIlluminaHiSeq2000platform.TheRNAsequencingdatasets
reportedinthisarticleareavailableintheArrayExpressdatabase(ArrayExpressaccession:
E-MTAB-4691;http://www.ebi.ac.uk/arrayexpress).
Fordataanalysis,FastQCwasusedtoverifythequalityoftherawsequencingreads[24].
Next,sequenceswerealignedtothereferenceP.aeruginosaUCBPP-PA14genome
(NC_008463.1)withBowtie2usingstandardsettings.Onlysamplesinwhichmorethan90%
ofthereadsalignedexactlyoncewerewithheldforfurtheranalysis(seeS2Table).Subse-
quently,readcountspergenewerecalculatedforeachsamplewithHtseq-count[25].The
DESeq2package[26]wasusedtonormalizethedataandtodetectdifferentialexpression
betweentreatedandcontrolsamplesusingaFalseDiscoveryRate(FDR)<0.05.Next,anet-
workanalysiswascarriedoutusingPheNetic[27].Thisanalysislooksforbothregulatorypro-
gramscommontomultipledifferentiallyexpressedgenesandfordownstreamprocesseswhich
areactivatedbydifferentiallyexpressedgenes,thusvisualizingimportantmolecularprocesses
underlyingtheobservedphenotypeofthetestedorganism.Inputdataconsistofthreetypesof
information:aninteractionnetworkofthetestedorganism,thedifferentialexpressiondataof
allgenesinthenetworkandagenelistofsignificantlydifferentiallyexpressedgenes.Currently,
nointeractionnetworkexistsforP.aeruginosaPA14.Forthisreason,aninteractionnetwork
forP.aeruginosaPAO1wascreated,usingdifferentpubliclyavailabledatasets(STRING[28],
KEGG[29,30]).Subsequently,thegenesofPA14weremappedtothegenesofPAO1usingthe
RapidAnnotationusingSubsystemTechnology(RAST)server[31].Significantlydifferentially
expressedgenesweredefinedasthe100geneshavingthehighestlog2-foldchange.PheNetic
wasrunusingthestandardparametersonthewebserver(22).GeneOntology(GO)enrich-
mentwasperformedontheresultingsubnetworkusingtheCytoscape[32]pluginBiNGO[33]
(hypergeometrictest,α<0.05,FDRcorrection).GOannotationsforP.aeruginosaPAO1were
retrievedfromUniprot[34].
Screeningofatransposonmutantlibrary
AP.aeruginosaPA14transposonlibrary[35]wasscreenedforincreasedsensitivityorresis-
tancetoSPI031.Mutantswereallowedtogrowin1/20TSBin96-wellplates.Afterovernight
incubation,thecultureswerediluted100-foldin1/20TSBcontainingeither0.2xMICor2x
PLOSONE|DOI:10.1371/journal.pone.0155139 May11,2016 5/17
ModeofActionoftheNewAntibacterialSPI031
MICofSPI031(seeS1Table)todetecthypersensitiveorresistantmutants,respectively.Next,
theplateswereincubatedwhileshakingfor24hat37°C.Growthwasmonitoredbymeasuring
theOD .MutantswereidentifiedashypersensitiveiftheirOD waslessthan0.05after
595 595
incubationinthepresenceof0.2xMICofSPI031.Ontheotherhand,mutantswereidentified
asresistantiftheirOD wasmorethan0.1afterincubationinthepresenceof2xMICof
595
SPI031.Subsequently,thesusceptibilityoftheselectedmutantswasvalidatedbydetailedmoni-
toringofgrowthinthepresenceofeither0.2xor2xMICofSPI031usinganautomatedOD
platereader(BioscreenC,OyGrowthcurvesAbLtd).
Statisticalanalysis
Allexperimentswererepeatedindependentlyatleast3times.Statisticalsignificanceofdata
wasdeterminedbyapplyingastudent’st-testusingGraphPadPrismversion5(GraphPadSoft-
ware,USA).Differenceswereconsideredsignificantif(cid:1)p(cid:3)0.05.
Results
SPI031displaysrapidkillingactivityagainstpathogenicbacteria
Recently,wedemonstratedthatSPI031exhibitsantibacterialeffectsagainstdifferentbacterial
pathogens(MICbetween4.63and18.5μg/ml)[15].Inthepresentstudy,time-killassayswere
performedtoanalyzethekillingrateofSPI031andtocompareitwiththatofconventionalanti-
bioticsfrequentlyusedinclinicalsettings.MICvaluesforSPI031andselectedantibioticswere
determinedandarelistedinS1Table.Fig2AshowsthekillingcurvesofSPI031andvancomycin
forS.aureus.At1xMICofSPI031,thebactericidalendpointwasachievedafter24h,witha
reductionofCFUbyalmost6logunits.Vancomycinhadalowbactericidalactivityat1xMIC
andsubstantialregrowthwasobservedafter2h.At4xMICofSPI031,morethan99%ofthebac-
teriawerekilledwithin30min.Incomparison,thekillingactivityofvancomycinat4xMICwas
muchslower,withareductionoftheinitialinoculumbyonly2logunitswithin24h.
ThekillingkineticsofSPI031andpolymyxinBagainstP.aeruginosaareshowninFig2B.At
1xMICofSPI031,a4-logreductionofviablecountswasachievedandregrowthwasobserved
after24h.At1xMICofpolymyxinB,a5-logreductionofthebacterialinoculumwasobtained
within10min,butfastregrowthwasobservedafter30min.At4xMIC,thebactericidalactivity
ofbothSPI031andpolymyxinBwasveryfast(7-logreductionwithin30min),indicatingthatat
highertherapeuticconcentrations,SPI031andpolymyxinBdisplaysimilarkillingactivities.
FrequencyofresistancedevelopmentagainstSPI031islow
ToinvestigatethepotencyofspontaneousresistancedevelopmentagainstSPI031,thefre-
quencybywhichP.aeruginosamutantsresistanttoSPI031emergewasdetermined,andcom-
paredtothoseassociatedwithconventionalantibiotics.ThemutationfrequencyofP.
aeruginosaforSPI031(6.09±2.10x10−8)wassignificantlylowerthanforpolymyxinB
(2.20±0.44x10−7)andnotsignificantlydifferentthanthatforofloxacin(4.03±1.10x10−8).
Interestingly,nospontaneousSPI031-resistantmutantsofS.aureuscouldbegenerated(limit
ofdetection<10−9).
SPI031exhibitsnon-specificinhibitionofmacromolecularbiosynthesis
pathways
ToinvestigatetheeffectofSPI031onmacromolecularpathways,amacromolecularsynthesis
assaywasperformed.Thepercentageofincorporationofradiolabeledprecursorsintomacro-
moleculeswasdetermineduponexposuretoSPI031andwascomparedwithresultsobtained
PLOSONE|DOI:10.1371/journal.pone.0155139 May11,2016 6/17
ModeofActionoftheNewAntibacterialSPI031
Fig2.Time-killkineticsofSPI031againstS.aureusandP.aeruginosa.(A)Concentration-dependentkillingofS.aureusby
SPI031andvancomycin(VAN).(B)Concentration-dependentkillingofP.aeruginosabySPI031andpolymyxinB(PMB).Alldata
representmeans±standarderrorofthemean(SEM)from3independentexperiments(*p<0.05;**p<0.01;***p<0.001).The
blackdottedlinesindicatethelowerlimitofdetection.
doi:10.1371/journal.pone.0155139.g002
aftertreatmentwithknowninhibitorsofDNA,RNAorproteinsynthesis:ciprofloxacin,rifam-
picinandtetracycline,respectively(Fig3).At4xMICofSPI031,nopreferentialinhibitionof
testedmacromolecularprocesseswasobserved,aprofilethatisobservedforantibacterial
agentsthatactbydisruptingtheintegrityofthecytoplasmicmembrane[36–39].
PLOSONE|DOI:10.1371/journal.pone.0155139 May11,2016 7/17
ModeofActionoftheNewAntibacterialSPI031
Fig3.EffectofSPI031onmacromolecularsynthesisinS.aureus.Incorporationof[methyl-3H]thymidine(A),[5,6-3H]uridine(B)andL-[G-3H]glutamine
(C)byS.aureusaftertreatmentwithSPI031,ciprofloxacin,rifampicinortetracyclineat4xMIC.Incorporationwasexpressedaspercentageofuntreated
control.Valuesshownaremeans±SDoftriplicatedeterminations.
doi:10.1371/journal.pone.0155139.g003
SPI031permeabilizesthemembrane(s)ofbothS.aureusandP.
aeruginosa
Basedontheresultsofthemacromolecularsynthesisanalysis,wefurtherinvestigatedmem-
branepermeabilisation.PermeabilizationofthemembraneofS.aureusaftertreatmentwith
SPI031wasassessedusingthenucleicacidstainSYTOXgreen.Thisstainonlyentersthecyto-
plasmifthemembraneiscompromised.Uponuptake,SYTOXgreenbindstonucleicacids,
whichinturnresultsinincreasedfluorescence[40].AdditionofSPI031toS.aureuscells
causedaconcentration-dependentincreaseinSYTOXgreenfluorescence,indicatingthat
SPI031permeabilizesthemembrane(Fig4A).At1xMICofSPI031,membranepermeabiliza-
tionwascomparabletothataftertreatmentwiththetoxinmelittinfrombee-venom,which
wasusedasapositivecontrol.InnermembranepermeabilityofP.aeruginosaaftertreatment
withSPI031wasalsoinvestigatedusingSYTOXgreen(Fig4B).SPI031wasabletorapidly
Fig4.EffectofSPI031onmembranepermeability.(A)EffectofincreasingconcentrationsofSPI031onthemembranepermeabilityofS.aureus,
monitoredbytheuptakeofSYTOXgreen.Cellstreatedwithmelittin(MEL)(1xMIC)servedasapositivecontrol.(B)InnermembranepermeabilizationofP.
aeruginosaaftertreatmentwithdifferentconcentrationsofSPI031,determinedbymeasuringSYTOXgreenuptake.Melittin(MEL)(1xMIC)wasusedasa
positivecontrol.(C)OutermembranepermeabilizationofP.aeruginosaaftertreatmentwithdifferentconcentrationsofSPI031,assessedbyquantifyingNPN
uptake.CellstreatedwithpolymyxinB(PMB)(1xMIC)wereusedasapositivecontrol.Datarepresentthemeansofthreeindependentreplicates±SEM
(*p<0.05;**p<0.01;***p<0.001comparedtountreatedcontrol).
doi:10.1371/journal.pone.0155139.g004
PLOSONE|DOI:10.1371/journal.pone.0155139 May11,2016 8/17
ModeofActionoftheNewAntibacterialSPI031
induceSYTOXgreenuptake,suggestingthatthecompoundalsopermeabilizestheinnermem-
braneofP.aeruginosa.
Next,permeabilizationoftheoutermembraneofP.aeruginosawasdeterminedaftertreat-
mentwithdifferentconcentrationsofSPI031,usingthehydrophobicprobeNPN.Thisprobe
isnormallyexcludedfrombacterialmembranesduetothepresenceoflipopolysaccharidemol-
eculesontheoutermembrane[41].However,whentheoutermembraneispermeabilized,
NPNcanenterthemembranes,leadingtoastrongincreaseinfluorescence[42].Asshownin
Fig4C,SPI031rapidlypermeabilizedtheoutermembraneofP.aeruginosainaconcentration-
dependentmanner.At1xMICofSPI031,theNPNuptakewassimilartothatofthepositive
controlpolymyxinB.
SPI031targetsthephospholipidcomponentofbacterialmembranes
Inadditiontolipids,thebacterialmembranecontainsmanyotherbiologicalmolecules.To
investigatethedirectinteractionofSPI031withthephospholipidbilayer,acarboxyfluorescein
(CF)leakageassaywasperformed.Forthisassay,CF-loadedliposomeswereusedthatmimic
thecompositionofthephospholipidbilayerofS.aureus.AsshowninFig5,SPI031causedsub-
stantialreleaseofCFat4xMIC,andanintermediatereleaseat1xMIC.Theseresultsindicate
thatSPI031isabletointeractwiththephospholipidbilayer,whichinturnresultsindestabili-
zationofthecytoplasmicmembrane.
MembranedamagecausedbySPI031canbevisualized
microscopically
TofurtherinvestigatetheeffectofSPI031onthemembrane,themembranestainFM4–64was
used(Fig6).TreatmentofexponentiallygrowingcellsofS.aureusandP.aeruginosawithsol-
ventcontrolDMSOresultedinuniformlystainedmembranes.Incontrast,treatmentofthe
cellswithSPI031at1xMICresultedinspecificmembraneaccumulations.Heterogeneityin
membranestainingwasalsoseeninP.aeruginosacellstreatedwith1xMICofpolymyxinB.In
contrast,P.aeruginosacellsexposedto1xMICoftobramycinshowednomembranedefects
(datanotshown).Overall,theseresultsfurthercorroborateacleardirecteffectofSPI031on
thebacterialmembrane.
Fig5.IntegrityofS.aureusliposomesaftertreatmentwithSPI031at1xMICand4xMIC.SDS(5%)and
tetracycline(TET)(4xMIC)wereusedaspositiveandnegativecontrols,respectively.Meansandstandard
deviation(SD)of3independentexperimentsareshown(*p<0.05;**p<0.01;***p<0.001comparedto
treatmentwithtetracycline).
doi:10.1371/journal.pone.0155139.g005
PLOSONE|DOI:10.1371/journal.pone.0155139 May11,2016 9/17
ModeofActionoftheNewAntibacterialSPI031
Fig6.MicroscopicanalysisofthecellmembraneaftertreatmentwithSPI031.FluorescentimagesofS.aureuscells(upper
row)andP.aeruginosacells(lowerrow)stainedwithFM4–64intheabsenceorpresenceof1xMICofSPI031.Scalebar
correspondsto2μm.ImageswereprocessedwithunsharpmaskofZen2.0.
doi:10.1371/journal.pone.0155139.g006
WholegenomesequencingofSPI031-resistantmutantsreveals
mutationsingenescodingforproteinsinvolvedinoutermembrane
synthesisandeffluxmechanisms
Mutationalanalysisofspontaneousresistantmutantsisanapproachcommonlyusedtogain
moreinformationaboutprimarytargetsofnewantibacterialcompounds[43–46].Therefore,
threeindependentspontaneousSPI031-resistantmutantsofP.aeruginosawereselectedand
weresubjectedtowholegenomesequencing.AllidentifiedmutationsarelistedinS3Table.
OnemutantcarriedmutationsinnfxB,whichcodesfortherepressoroftheMexCD-OprJmul-
tidrugeffluxpump[47].ThesefindingsindicatethatSPI031maybeasubstrateforthisefflux
pump.Thetwoothermutantshadmutationsingenescodingforproteinsinvolvedinouter
membranesynthesis(htrBandPA14_23400)[48,49].Forthesemutants,wehypothesizethata
changeinthestructureoftheoutermembraneisresponsiblefortheobservedresistance.In
addition,twoP.aeruginosamutantsacquiredmutationsinintergenicregions.
PLOSONE|DOI:10.1371/journal.pone.0155139 May11,2016 10/17
Description:1 Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium, This is an open medium, provided the original author and source are acquired S. aureus can range from minor skin and tissue infections to . Cultures were labeled by the addition of either [methyl-3H]thymidine, [5,6-3H].