Table Of ContentM , V . 1:
ATEMÁTICAS AVANZADAS PARA INGENIERÍA OL
E
CUACIONES
DIFERENCIALES
M , V . 1:
ATEMÁTICAS AVANZADAS PARA INGENIERÍA OL
E
CUACIONES
DIFERENCIALES
Tercera edición
Dennis G. Zill
Loyola Marymount University
Michael R. Cullen (fi nado)
Loyola Marymount University
Revisión técnica:
Natella Antonyan Gabriel Cervantes Bello
Departamento de Matemáticas Escuela de Ingeniería y Arquitectura,
Instituto Tecnológico y de Estudios Superiores Instituto Tecnológico y de Estudios Superiores
de Monterrey, campus Ciudad de México de Monterrey, campus Toluca
Andrés Basilio Ramírez y Villa José Abraham Balderas López
Facultad de Ingeniería, Universidad Nacional Departamento de Matemáticas,
Autónoma de México y Escuela de Ciencias Químicas, UPIBI, Instituto Politécnico Nacional
Universidad La Salle
MÉXICO (cid:129) BOGOTÁ (cid:129) BUENOS AIRES (cid:129) CARACAS (cid:129) GUATEMALA (cid:129) LISBOA
MADRID (cid:129) NUEVA YORK (cid:129) SAN JUAN (cid:129) SANTIAGO (cid:129) AUCKLAND
LONDRES (cid:129) MILÁN (cid:129) MONTREAL (cid:129) NUEVA DELHI (cid:129) SAN FRANCISCO (cid:129) SÃO PAULO
SINGAPUR (cid:129) SAN LUIS (cid:129) SIDNEY (cid:129) TORONTO
Director Higher Education: Miguel Ángel Toledo Castellanos
Director editorial: Ricardo A. del Bosque Alayón
Editor sponsor: Pablo E. Roig Vázquez
Editora de desarrollo: Lorena Campa Rojas
Supervisor de producción: Zeferino García García
Traducción: Erika Jasso Hernán D’Borneville
Carlos Roberto Cordero Pedraza
MATEMÁTICAS AVANZADAS PARA INGENIERÍA, VOL. 1:
ECUACIONES DIFERENCIALES
Tercera edición
Prohibida la reproducción total o parcial de esta obra,
por cualquier medio, sin la autorización escrita del editor.
DERECHOS RESERVADOS © 2008 respecto a la primera edición en español por
McGRAW-HILL/INTERAMERICANA EDITORES, S.A. DE C.V.
A Subsidiary of The McGraw-Hill Companies, Inc.
Edificio Punta Santa Fe
Prolongación Paseo de la Reforma 1015, Torre A
Piso 17, Colonia Desarrollo Santa Fe,
Delegación Álvaro Obregón
C.P. 01376, México, D. F.
Miembro de la Cámara Nacional de la Industria Editorial Mexicana, Reg. Núm. 736
ISBN-10: 970-10-6514-X
ISBN-13: 978-970-10-6514-3
Traducido de la tercera edición en inglés de la obra: ADVANCED ENGINEERING MATHEMATICS, by Dennis G. Zill
and Michael R. Cullen. Copyright © 2006 by Jones and Bartlett Publishers, Inc., págs i-xxii, xxv-xxxiii, 1-298, 347-450,
567-794, App-1-App-8, Ans-1-Ans-41 e I-1-I-23. Se reservan todos los derechos.
ISBN-10: 0-7637-4591-X
ISBN-13: 978-0-7637-4591-2
1234567890 09765432108
Impreso en México Printed in Mexico
Prefacio a la tercera
edición en inglés
A diferencia de un curso de “cálculo” o de “ecuaciones diferenciales”, donde el conte-
nido del curso está muy estandarizado, el contenido de un curso titulado “matemáticas
para ingeniería” algunas veces varía de forma considerable entre dos instituciones aca-
démicas distintas. Por lo tanto, un texto sobre matemáticas avanzadas para ingeniería
es un compendio de muchos temas matemáticos, todos los cuales están relacionados en
términos generales por la conveniencia de su necesidad o utilidad en cursos y carreras
subsiguientes de ciencia e ingeniería. En realidad, no hay un límite para la cantidad de
temas que se pueden incluir en un texto como el que ahora nos ocupa. En consecuencia,
este libro representa la opinión de los autores, en este momento, acerca de lo que consti-
tuyen “las matemáticas para ingeniería”.
Contenido del texto
Los seis primeros capítulos constituyen un curso completo sobre ecuaciones diferencia-
les ordinarias. El capítulo sobre Matrices constituye una introducción a los sistemas de
ecuaciones algebraicas, los determinantes y el álgebra matricial con énfasis especial en
aquellos tipos de matrices útiles en la resolución de sistemas de ecuaciones diferenciales
lineales.
Las secciones sobre criptografía, códigos para la corrección de errores, el método de
los mínimos cuadrados y los modelos compartimentales discretos se presentan como
aplicaciones del álgebra matricial.
Posteriormente se abordan los Sistemas de ecuaciones diferenciales lineales en el
capítulo 8 y el capítulo 9, los Sistemas de ecuaciones diferenciales no lineales. Ambos
empatan fuertemente con el material sobre matrices que se presenta en el capítulo 7. En
el capítulo 8, los sistemas de ecuaciones lineales de primer orden se resuelven aplicando
los conceptos de valores propios, vectores propios, diagonalización y función exponen-
cial por medio de una matriz. En el capítulo 9 se explican los conceptos de estabilidad
mediante dos aplicaciones: flujo de fluido en un plano y movimiento de una cuenta sobre
un cable.
En el capítulo 10, Funciones ortogonales y series de Fourier, se presentan los temas
fundamentales de conjuntos de funciones ortogonales y expansiones de funciones en
términos de una serie infinita de funciones ortogonales. Estos temas se utilizan posterior-
mente en los capítulos 11 y 12, donde los problemas de valor en la frontera en coordena-
das rectangulares, polares, cilíndricas y esféricas se resuelven mediante la aplicación del
v
método de separación de variables. En el capítulo 13, Método de la transformada inte-
gral, los problemas de valor en la frontera se resuelven por medio de las transformadas
integrales de Laplace y Fourier.
Principales características de Matemáticas
avanzadas para ingeniería, Vol. 1: Ecuaciones
diferenciales
• Todo el texto se modernizó a fondo para preparar a los ingenieros y científicos con las
habilidades matemáticas requeridas para estar a la altura de los desafíos tecnológicos
actuales.
• Se han agregado nuevos proyectos de ciencia e ingeniería aportados por importantes
matemáticos. Estos proyectos están relacionados con los temas del texto.
• Se han añadido muchos problemas nuevos al libro. Además, fueron reorganizados
muchos grupos de ejercicios y, en algunos casos, se han reescrito por completo para
seguir el flujo del desarrollo presentado en la sección y facilitar más la asignación de
tareas. Los grupos de ejercicios también ponen un gran énfasis en la elaboración de
conceptos.
• Hay un gran énfasis tanto en las ecuaciones diferenciales como en los modelos ma-
temáticos. La noción de un modelo matemático está entretejida a lo largo de todo el
texto, y se analiza la construcción y las desventajas de diferentes modelos.
• En la sección 5.3, Funciones especiales, se ha ampliado el análisis de las ecuaciones
diferenciales que se pueden resolver en términos de las funciones de Bessel. También
por primera vez se presentan las funciones de Bessel modificadas I(x) y K(x).
v v
• En la sección 8.4, Sistemas lineales no homogéneos, se cubre el método de los coefi-
cientes indeterminados.
• Otro método para resolver problemas no homogéneos de valor en la frontera fue agre-
gado a la sección 11.6.
• Se enfatiza más el problema de Neumann en los capítulos 11 y 12.
• A lo largo de los capítulos 10, 11 y 12, la confusa mezcla de símbolos como l2 y
1(cid:2)l en la solución de problemas de valor en la frontera de dos puntos se ha reem-
plazado por el uso consistente de l. Los tres casos l (cid:3)a2, l (cid:3) 0 y l (cid:3)(cid:2)a2 se
enfatizan mediante el análisis.
Diseño del texto
Como resultará evidente, el texto tiene un formato más amplio y un diseño interior a dos
tintas, con el fin de que la lectura y el aprendizaje de este libro sean más amenos y di-
dácticos. Todas las figuras tienen textos explicativos. Se han agregado más comentarios
y anotaciones al margen en todo el libro. Cada capítulo tiene una página de presentación
que incluye una tabla de contenido y una breve introducción al material que se estudiará.
Al final de cada capítulo se incluyen ejercicios de revisión. Después de los apéndices se
proporcionan respuestas a los problemas impares seleccionados.
Agradecimientos
Deseo agradecer a las siguientes personas que generosamente destinaron tiempo de sus
ocupadas agendas para proporcionar los proyectos incluidos en el texto:
Anton M. Jopko, Departamento de Física y Astronomía, McMaster University.
Warren S. Wright, Departamento de Matemáticas, Loyola Marymount University.
vi PREFACIO A LA TERCERA EDICIÓN EN INGLÉS
Gareth Williams, Departamento de Matemáticas y Ciencias Computacionales,
Stetson University.
Jeff Dodd, Departamento de Computación y Ciencias de la Información,
Jacksonville State University.
Matheus Grasselli, Departamento de Matemáticas y Estadística, McMaster
University.
Dmitry Pelinovsky, Departamento de Matemáticas y Estadística, McMaster
University.
También es un gusto poder agradecer a las siguientes personas por sus comentarios y
sugerencias de mejora:
Sonia Henckel, Loyola Technological University.
Donald Hartig, California Polytechnic State University, San Luis Obispo.
Jeff Dodd, Jacksonville State University.
Victor Elias, University of Western Ontario.
Cecilia Knoll, Florida Institute of Technology.
William Criminale, University of Washington.
Stan Freidlander, Bronx Community College.
Herman Gollwitzer, Drexel University.
Robert Hunt, Humboldt State University.
Ronald Guenther, Oregon State University.
Noel Harbertson, California State University.
Gary Stoudt, Indiana University of Pennsylvania.
La tarea de compilar un texto de esta magnitud fue, en pocas palabras, larga y difícil.
A lo largo del proceso de pasar cientos de páginas manuscritas por muchas manos, sin
lugar a dudas se nos pudieron haber escapado algunos errores. Por esto me disculpo de
antemano, y desde luego, apreciaría saber acerca de cualquier error con el fin de corre-
girlo a la mayor brevedad.
Dennis G. Zill
Los Angeles
PREFACIO A LA TERCERA EDICIÓN EN INGLÉS vii