Table Of ContentAstronomy&Astrophysicsmanuscriptno.lpagani (cid:13)c ESO2008
February5,2008
Depletion and low gas temperature in the L183 prestellar core:
+ + ⋆
the N H - N D tool
2 2
7
0 L.Pagani1,A.Bacmann2,S.Cabrit1,andC.Vastel3
0
2
1 LERMA&UMR8112duCNRS,ObservatoiredeParis,61,Av.del’ObservatoireF-75014Paris
n e-mail:[email protected]
a 2 UniversiteBordeaux1;CNRS;OASU;UMR5804,FloiracF-33270
J
3 Centred’EtudeSpatialedesRayonnements,9avenueduColonelRoche,BP4346,F-31029ToulouseCedex,France
9
2
Received31/10/2006;accepted26/01/2007
1
v ABSTRACT
3
2 Context.Thestudyofpre-stellarcores(PSCs)suffersfromalackofundepletedspeciestotracethegasphysicalpropertiesintheirverydense
8 innerparts.
1 Aims.WewanttocarryoutdetailedmodellingofN H+ andN D+ cutsacrosstheL183maincoretoevaluatethedepletionofthesespecies
2 2
0 andtheirusefulnessasaprobeofphysicalconditionsinPSCs.
7 Methods.Wehavedevelopedanon-LTE(NLTE)Monte-Carlocodetreatingthe1DradiativetransferofbothN H+ andN D+,makinguse
2 2
0
ofrecentlypublishedcollisionalcoefficientswithHebetweenindividualhyperfinelevels.Thecodeincludeslineoverlapbetweenhyperfine
/
h transitions. An extensive set of core models is calculated and compared with observations. Special attention is paid to the issue of source
p couplingtotheantennabeam.
- Results.Thebestfittingmodelsindicatethati)gasinthecorecenterisverycold(7±1K)andthermalizedwithdust,ii)depletionofN H+
o 2
doesoccur,startingatdensities5–7×105 cm−3 andreachingafactorof6+13 inabundance,iii)deuteriumfractionationreaches∼70%atthe
r −3
t corecenter,andiv)thedensityprofileisproportionaltor−1outto∼4000AU,andtor−2beyond.
s
a Conclusions.OurNLTEcodecouldbeusedto(re-)interpretrecentandupcomingobservationsofN2H+ andN2D+ inmanypre-stellarcores
: ofinterest,toobtainbettertemperatureandabundanceprofiles.
v
i
X Keywords.ISM:abundances–ISM:molecules–Radiativetransfer–ISM:structure–ISM:individual:L183–Line:formation
r
a
1. Introduction Among the above three species, H D+ is thus the only
2
one not to deplete. However, it has only one (ortho) transi-
Understandingstar formationis critically dependentuponthe
tion observable from the ground, that moreover requires ex-
characterisation of the initial conditions of gravitational col-
cellentsky conditions.The paraformgroundtransition at1.4
lapse,whichremainpoorlyknown.Itisthereforeofprimeim-
THzshouldnotbedetectableinemissionincoreswithT ≤
kin
portancetostudythepropertiesofpre-collapseobjects,theso- 10 K. Therefore H D+ is useful for chemical and dynamical
2
called pre-stellar cores (hereafter PSCs). As bolometers and
studies,butbringslittleinformationongasphysicalconditions.
infrared extinction maps have been unveiling PSCs through
NH inversionlinesat23GHzcanprovidekinetictemperature
3
their dust component, it has become clear that depletion of
measurements as long as higher lying non-metastable levels
moleculesonto ice mantlesis taking place inside these cores,
arenotsignificantlypopulated(Walsmley&Ungerechts1983).
preventing their study with the usual spectroscopic tools. In
However, because the critical density of the NH (1,1) inver-
3
mostPSCs,veryfewobservablespeciesseemtosurviveinthe sionlineisonly∼2000cm−3,thistracermayhavesubstantial
gasphaseinthedenseandcoldinnerparts,namelyN H+,NH ,
2 3 contribution from external, warmer layers, not representative
H2D+andtheirisotopologues(e.g.Tafallaetal.2002).Inafew ofthedensestpartsofPSCs.Thethirdspecies,N H+,appears
2
cases,itisadvocatedthatevenN-bearingspeciesalsodeplete
verypromising:ithasthestrongadvantageofhavingmmtran-
(e.g. B68: Bergin et al. 2002; L1544: Walmsley et al. 2004; sitions with critical densities in the range 0.5–70×106 cm−3
L183:Paganietal.2005,hereafterPPABC).
and intensehyperfinecomponentsforthe (J:1–0)line in typi-
calPSCconditions.Theratioofhyperfinecomponentsgivesan
Sendoffprintrequeststo:L.Pagani estimate of the opacityand excitationtemperatureof the line.
⋆ Basedonobservations madewiththeIRAM30-mandtheCSO Fitting both the hyperfineratiosand the (J:1–0) to (J:3–2) ra-
10-m.IRAMissupportedbyINSU/CNRS(France),MPG(Germany), tiowitharigorousNLTEmodelshouldthusbringstrongcon-
andIGN(Spain).
2 L.Paganietal.:DepletionandlowgastemperatureintheL183prestellarcore:theN H+-N D+tool
2 2
Fig.1.N H+ observations(greylines)comparedtoourbestradiativetransfermodel(seeFig4a-b).Eachcolumncorrespondsto
2
aspatialoffset(indicatedabovethetopbox)fromthemaindustpeak.ThetoprowcontainstheCSO10-mdata,theotherrows
theIRAM30-mdata.The(J:1–0)lineissplitbetweenthebottomrow(centraltriplet)andthenextrow(’red’triplet);theisolated
’blue’componentisnotshown.TherightmostcolumnrepresentsthefitforthecentralpositionwithaNLTEcodewithoutoverlap
forthesamecloudparameters.
straints on both T and n(H ). Collisional coefficients (with Weststripacrossthecore(centeredatα(2000)=15h54m08.5s,
kin 2
He)betweenindividualhyperfinesublevelshavebecomeavail- δ(2000)=−2◦52′48′′).Symmetriceasternandwesternspectra
ablerecently(Danieletal.2005).However,currentexcitation wereaveragedoutto±48′′togiveamorerepresentativeradial
models(Danieletal.2006a)donottakeintoaccountlineover- profile.A small anti-symmetricvelocityshiftof a few tensof
lap,whichlimitstheiraccuracy.Anotherquestionthatremains ms−1wasnoticedoneithersidesofthePSCcenteratdistances
is whether N H+ is indeed able to probe the central core re- beyond±30′′,possiblyindicativeofrotation(seeSection3.2).
2
gions,despitethedepletioneffectswhichhavebeenreported. This shift was compensated for when averaging eastern and
In this paper, we introduce a new NLTE Monte-Carlo 1D western spectra, in order not to artificially broaden the lines.
code1treatingN H+andN D+radiativetransferwithlineover- Beyond48′′,onlyeasternpositionsareconsidered,asthewest-
2 2
lap,andapplyittodetailedanalysisofthemainPSCinL183, ernsideiscontaminatedbyaseparatecore(Peak3;Paganiet
a clear-cut case of N H+ depletion (cf. PPABC). We demon- al. 2004). Lines of N H+ (J:1–0), (J:3–2) and of N D+ (J:1–
2 2 2
strate the capability of the modelto constrainphysicalcondi- 0),(J:2–1)and(J:3–2)were observedin Frequencyswitching
tions inside the PSC (temperature,density profile, abundance mode, with velocity sampling 30–50 ms−1 and T ranging
sys
anddepletion,deuteriumfractionation).Inparticularweshow from100K at3mmupto1000K at1mm.TheN H+ (J:2–1)
2
thatthegasisverycoldatthecorecenterandthermalizedwith lineat186GHzwasnotobserved,asitliesonly3GHzaway
thedust,andthatN D+appearsaveryusefultracerofphysical from the telluric water line at 183 GHz, hence its usefulness
2
conditionsintheinnermostcoreregions. toconstrainexcitationconditionswouldbelimitedbycalibra-
tionsensitivitytoeventinyskyfluctuations.Theproblemdoes
notapplytoN D+whichliesafactorof1.2lowerinfrequency.
2
2. Observationsandanalysis Spatialresolutionrangesfrom33′′at77GHzto9′′at279GHz.
ThemaindustcoreinL183(Paganietal.2004)wasobserved AdditionalCSO 10-mobservationsofN2H+ (J:3–2)wereob-
attheIRAM30-mtelescopeinNovember2003,July2004and tained in June 2004 at selected positions. Observations were
October 2006. Spectra were taken on a 12′′ grid in an East- done in Position Switch mode with the high resolution AOS
(48kHz sampling)anda T around600K. A majorinterest
sys
1 TheFortrancodeisavailableuponrequesttotheauthor
L.Paganietal.:DepletionandlowgastemperatureintheL183prestellarcore:theN H+-N D+tool 3
2 2
Table 1. Spectral parameters of each line observed towards the PSC center position (α(2000) = 15h54m08.5s, δ(2000)=
−2◦52′48′′) with V = 2.3672(2) kms−1 (from the NH (1,1) measurement): noise level, reference observing frequency,
LSR 3
intrinsiclinewidthofhyperfinetransitionsandtotalopacity(bothfromtheCLASSHFSroutine),relativevelocityandintensity
ofthemainhyperfinegroups(fromgaussianfits).Valuesinparenthesesare1σuncertaintiesonthelastdigit.Forcomparison,
theT∗ ratiosofhyperfinegroupsgivenbytheirstatisticalweightsarelistedinitalics.Thedetailedhyperfinestructureofthe3
R
speciesisdescribedinCasellietal.(1995)forN H+,Doreetal.(2004)forN D+ andKukolich(1967)forNH
2 2 3
N H+(J:1−0) N H+(J:3−2)(IRAM) N H+(J:3−2)(CSO)
2 2 2
Noise(1σ) : 28mK 59mK 64mK
Ref.frequency : 93.173764GHz 279.511832GHz 279.511832GHz
IntrinsicFWHM : 0.195(1)kms−1 0.18(2)kms−1 a0.28(4)kms−1
Totalopacity : 21.8(5) 10(2) 2(1)
Hyperfine V T∗ Area T∗ Ratio V T∗ Area V T∗ Area
rel. R R rel. R rel. R
Group (kms−1) (K) (Kkms−1) obs weights (kms−1) (K) (Kkms−1) (kms−1) (K) (Kkms−1)
1 −8.009(7) 2.05(3) 0.47(3) 0.932 0.428 −2.58(1) 0.17(6) 0.013(5) −2.63(2) 0.20(6) 0.025(8)
2 −0.611(8) 1.81(3) 0.42(3) 0.822 0.428 0.00(1) 0.50(6) 0.29(2) 0.00(1) 0.67(6) 0.37(2)
3 0.000(7) 2.20(3) 0.60(3) 1 1 4.70(8) 2.25(6) 0.014(5) 4.68(3) 2.12(6) 0.028(9)
4 0.956(7) 2.08(3) 0.54(3) 0.945 0.714
5 5.546(7) 2.12(3) 0.47(3) 0.964 0.428
6 5.983(8) 2.04(3) 0.53(3) 0.927 0.714
7 6.94(1) 1.26(3) 0.24(3) 0.573 0.143
N D+(J:1−0) N D+(J:2−1)b N D+(J:3−2)
2 2 2
Noise(1σ) : 31mK 26mK 43mK
Ref.frequency : 77.109616GHz 154.217182GHz 231.321917GHz
IntrinsicFWHM : 0.226(3)kms−1 0.185(2)kms−1 0.18(2)kms−1
Totalopacity : 4.7(3) 4.9(1) 1.5(7)
V T∗ Area T∗ Ratio V T∗ Area V T∗ Area
rel. R R rel. R rel. R
(kms−1) (K) (Kkms−1) obs weights (kms−1) (K) (Kkms−1) (kms−1) (K) (Kkms−1)
1 −9.697(8) 0.77(3) 0.15(1) 0.7 0.428 −5.35(2) 0.16(3) 0.137(5) −3.26(1) <0.12
2 −0.763(8) 0.76(3) 0.15(1) 0.691 0.428 −0.759(8) 0.21(3) 0.080(3) 0.000(5) 0.72(4) 0.186(8)
3 0.000(7) 1.10(3) 0.33(2) 1 1 0.000(1) 1.37(3) 0.513(3) 0.46(2) 0.19(4) 0.06(1)
4 1.146(8) 0.92(3) 0.25(2) 0.836 0.714 0.646(4) 0.40(3) 0.139(3) 2.47(3) 0.11(4) 0.028(7)
5 6.65(2) 0.55(3) 0.16(2) 0.5 0.428 2.5(1) 0.08(3) 0.02(2)
6 7.19(1) 0.90(3) 0.23(2) 0.818 0.714 2.97(2) 0.43(3) 0.08(2)
7 8.34(2) 0.34(3) 0.05(2) 0.309 0.143 3.57(5) 0.26(3) 0.16(3)
NH (1,1) NH (2,2)
3 3
Noise(1σ) : 74mK 76mK
Ref.frequency : 23.6944957GHz 23.7226332GHz
IntrinsicFWHM : 0.195(1)kms−1 0.20(1)kms−1
Totalopacity : 24.2(4) 0.1(7)
V T∗ Area T∗ Ratio V T∗ Area
rel. R R rel. R
(kms−1) (K) (Kkms−1) obs weights (kms−1) (K) (Kkms−1)
1 −19.504(6) 2.62(7) 0.89(4) 0.922 0.363 −0.005(5) 0.73(8) 0.152(7)
2 −7.814(5) 2.68(7) 0.69(3) 0.944 0.273
3 −7.255(8) 1.95(7) 0.57(3) 0.687 0.182
4 −0.17(1) 2.84(7) 1.15(9) 1 1
5 0.30(2) 2.78(7) 1.0(1) 0.979 0.636
6 7.465(9) 2.60(7) 0.72(5) 0.915 0.303
7 7.89(1) 1.91(7) 0.48(5) 0.673 0.152
8 19.318(9) 2.48(7) 0.62(4) 0.873 0.242
9 19.85(1) 1.72(7) 0.42(5) 0.606 0.121
a CSOobservationsaredonewitharesolutionaround0.1kms−1(ormore)whichexplainsthislargervalue
b Thehyperfinestructureistoocomplextobedetailedcompletely.Onlythemaingroupsofhyperfinetransitionsaregiven
4 L.Paganietal.:DepletionandlowgastemperatureintheL183prestellarcore:theN H+-N D+tool
2 2
toobservethe(J:3–2)linewiththeCSO isthatthebeamsize cylinderoflength6′,withitsaxisintheplaneofthesky.The
and efficiencyis very similar to the 30-mvalues for the (J:1– intensity distribution along the east-west section of the cylin-
0)line,thusalmostcancelingoutbeamcorrectionerrorsinthe der is taken as the emergent signal along the equator of our
comparisonbetween the two. It is thus a usefulconstraintfor spherical Monte-Carlo model. We then replicate these values
radiativetransfermodelling,eventhoughthehigherresolution alongthe(north-south)cylinderaxisbeforeconvolvingbythe
(9′′) 30-m (J:3–2) observations will be essential to constrain antenna beam. For N D+, the (unpublished) large-scale map
2
abundancesand physicalconditions in the innermostcore re- showsasmallernorth-southextent(≃2′)henceweuseacylin-
gions. Standard reduction techniques were applied using the derlengthof2′forconvolvingourmodel.
CLASSreductionpackage2. InFigs.1and2,weplottheobservationsinT∗ compared
R
ComplementaryobservationsofNH (1,1)and(2,2)inver- toourbestmodel(seeSection 3.4),convolvedbytheantenna
3
sion lines towards the PSC center were also obtained at the beamasexplainedabove.
new Green Bank 100-m telescope (GBT) in November 2006
withvelocitysamplingof20ms−1 andatypicalT of50K,
sys 3. Modellinganddiscussion
in Frequency Switch mode. The angular resolution (∼35′′) is
closetothatofthe30-minthelowfrequency(J:1-0)N2D+line. 3.1.Radiativetransfercode
The main beam efficiency of the GBT at 23 GHz is between
0.95and1,hencenocorrectionwasappliedtoputthespectra OursphericalMonte-CarlocodeisderivedfromBernes’code
onT∗ scale. (Bernes1979)andhasbeenextensivelytestedonmodelsofCO
R
Table 1 summarizesthe main observationalparametersof emissionfromdensecores(e.g.Pagani1998).Itwasrecently
the lines observed towards the core center: noise level of updated to take into account overlap between hyperfine tran-
the spectrum (rms), rotational line total opacity and intrinsic sitionsoccuringatcloseoridenticalfrequencies.Thisisdone
FWHM width of individualhyperfinetransitions (as fitted by by treating simultaneously the photon transfer for all hyper-
theCLASSHFSroutine,whichassumesequalexcitationtem- fine transitionsofthe same rotationalline (see also Appendix
perature for all sublevels), and relative velocity centroids and in Go´nzalez-Alfonso & Cernicharo 1993). Instead of choos-
intensitiesofthemainhyperfinegroupsinourspectra(derived ing randomly the frequency of the emitted photon, a binned
fromgaussianfits). Notethatthehyperfinegroupsare always frequencyvectorisdefinedforeachrotationaltransitioninside
broaderthantheintrinsiclinewidthderivedbyCLASS,dueto whichallhyperfinetransitionsarepositioned.Allbinsarefilled
opticaldeptheffectsand/orto thepresenceofadjacenthyper- with their share of spontaneously emitted photons (or 2.7K
finecomponentstooclosetobespectroscopicallyseparated. continuumbackgroundphotons)and, duringphotonpropaga-
To comparewith models,beamefficiencycorrectionis an tion, absorptioniscalculatedfor eachbin bysummingallthe
important issue. Since L183 (as well as other PSCs) is very hyperfinetransitionopacitiesatthatfrequency
extendedcomparedto the primarybeamof10′′–30′′, the T
mb
intensityscale is inadequate,as itwill overcorrectforsource- τ(ν)= κ(ν)ds= τφ(ν)= κφ(ν) ds
abnritgehntnnaescso3u(pclfi.nPgPaAnBdCth)u.sToovaevroeisdtitmhiastpertohbeletrmue,osbosuerrcveesdusrpfaecce- Z Xi i i Z Xi i i
tra are correctedonlyformoonefficiency(∼T∗ scale), while where κi is the absorptioncoefficient,τi the opacityand φi(ν)
modelsareconvolvedbythefullbeampatternoRfthe30mtele- the local frequencyprofile of the ith hyperfine transition. The
scope(cf.Greveetal.1998)4,yieldingintensitiesonthesame total number of absorbed photons Io(ν)e−τ(ν) is then redis-
T∗ scale.FortheCSO,wealsocorrectthedataformooneffi- tributedamonghyperfinelevelsaccordingtotheirrelativeab-
R
ciency(η ≈0.8at279GHz)andasthedetailsofthebeam sorptioncoefficients
moon
pattern are not known, the model output is convolved with a
κφ(ν)
simplegaussianbeam.BecausetheCSOmainbeamcoupling dIi(ν)= iκ(iν) ×Io(ν)e−τ(ν)
isverygoodat1.1mm(η ≥0.7),theuncertaintyofthecor-
MB
rectionshouldbelimited. Overlap is treated for all rotational transitions. Statistical
Inordertotreatcorrectlythebeamcouplingtothesource, equilibrium,includingcollisions,isthensolvedseparatelyfor
wealsotakeintoaccountthefactthattheL183coreislocated eachhyperfineenergylevel.
within a larger-scale N H+ filament oriented roughly north- Collisionalcoefficientsareavailablefortransitionsbetween
2
south,asrevealedbypreviouslow resolutionmaps(PPABC). allindividualhyperfinelevels,butwerecalculatedwithHe as
Thiselongationismostlyconstantinintensityover≃6arcmin- acollisionerinsteadofH (Danieletal.2005).Wescaledthem
2
utes.Thereforeweapproximatethebrightnessdistributionasa up by 1.37 to correct for the difference in reduced mass, but
notethatthiscorrectionisonlyapproximate(seeWilleyetal.
2 http://www.iram.fr/IRAMFR/GILDAS/
2002andDanieletal.2006a).Thecodeworksforbothisotopo-
3 Teyssier et al. (2002) provide appropriate corrections for 30-m
logues.Asonecanprobablyneglectthevariationoftheelectric
data, but only for uniform circular disk sources, and for data taken
dipolemoment(Gerinetal.2001),theN D+ Einsteinsponta-
beforethe1998surfacereadjustment. 2
4 The last surface readjustment of the 30-m in1998 has not been neousemissioncoefficientsarederivedfromthoseofN2H+by
characterizedindetail,thereforewehavescaleddowntheerrorbeam simplyscalingthemdownby1.23.Deexcitationcollisionalco-
couplingcoefficientsgiveninGreveetal.(1998)toretrievethenew, efficients are kept the same as for N2H+ (following Daniel et
improvedbeamefficiencies al.2006b).
L.Paganietal.:DepletionandlowgastemperatureintheL183prestellarcore:theN H+-N D+tool 5
2 2
Fig.2. N D+ observations (grey
2
lines) compared to our best radia-
tive transfer model for the largest
N D+ abundance possible (dotted
2
histogram in Fig 4a). All data are
fromIRAM30-m.Onlythecentral
tripletisrepresentedforthe(J:1–0)
transition
Thelocallineprofileinour1Dcodetakesintoaccountboth velocityfieldofafewtensofms−1wasfurtherimposedbeyond
thermalandturbulentbroadening,aswellasanyradialandro- 3000AU (see Table 2) to reproducethe smallanti-symmetric
tationalvelocityfields.Inprinciple,rotationintroducesadevi- velocityshiftfromPSCcenterobservedatdistancesbeyond±
ation from spherical symmetry. However, for small rotational 30′′(cf.Section2).Theradialvelocitywaskeptto0inalllay-
velocities (less than half the linewidth, typically), the excita- ers.AsseeninFigs.1and2,thisapproximationalreadygives
tionconditionsdonotnoticeablychangewithinagivenradial aremarkablefittoobservedlineprofiles,andisthereforesuffi-
shell,asshownbyaprevious2–Dversionofthiscode(Pagani cienttoderivetheoveralltemperatureandabundancestructure.
&Bre´artdeBoisanger,1996).Thereforethe(muchfaster)1D We considered a variety of density profiles: single power
versionremainssufficientlyaccurate. lawprofilesρ∝r−1,ρ∝r−1.5,ρ∝r−2,aswellasbrokenpower
OurMonte-Carlomodelshowsthatexcitationtemperatures lawswithρ ∝r−1 outto4000AUfollowedbyr−2,orbyr−3.5.
amongindividualhyperfinetransitionswithinagivenrotational Forgoodaccuracy,thedensityprofilewassampledin330AU
linedifferbyupto15%,hencetheusualassumptionofasin- = 3′′ thick shells, i.e. 3 to 10 times smaller thanour observa-
gle excitationtemperatureto estimate the line opacity(e.g.in tionalbeamsizes.Inallcases,divergenceatr=0wasavoided
the CLASS HFS routine) is not fully accurate as already no- byadoptinginsider=990AU thedensityslopederivedfrom
ticed by Caselli et al. (1995). Neglecting line overlap affects the ISOCAM data (Pagani et al. 2004). The density profiles
differentially the excitation temperature of hyperfine compo- werethenscaledtogivethesametotalcolumndensityN(H )
2
nents when the opacity is high enough, mostly decreasing it, = 1.4×1023 cm−2 towards the PSC center, as estimated from
butalso increasingit in a few cases. Forexample,in our best theMAMBOemissionmap(Paganietal.2004).Theeffectof
model for the L183 PSC, the excitation temperaturesof indi- changingthetotalN(H )onthefitresultswillbediscussedin
2
vidualhyperfinecomponentschangebyupto10%.Asshown Section3.4.1.
in the last column of Fig. 1, a noticeable difference between Wethenconsideredavarietyoftemperaturesspanningthe
models with and without overlap appears in the (J:3–2) line range 6–10 K in the inner core regions. We also tested non-
shape. constanttemperaturelaws,increasingupto12Kintheouter-
mostlayersand/orintheinnermostlayers.
For each combination of density and temperature laws, a
3.2.Gridofmodels
range of N H+ abundance profiles was investigated.To avoid
2
Our core model has an outer radius of 13333 AU ≃ 2′, fixed a prohibitivenumberof cases, abundanceswere sampled in 6
bythemaximumwidth≃4′ofdetectableN H+emissioninthe concentriclayersonly,correspondingtothespatialsamplingof
2
east-westdirectionacrossthePSC,asseeninlargescalemaps ourspectra(exceptthelast,widerlayerwhichencompassesthe
(PPABC).We assumethatN H+ abundanceiszerooutsideof outermosttwooffsets),andmultiplemaxima/minimawerefor-
2
thisradius(duetochemicaldestructionbyCO). bidden.Thisleadtoatotalofabout40,000calculatedmodels
For all models, the microscopic turbulence is set to with 8 free parameters (6 abundances, 1 temperature profile,
∆v (FWHM)=0.136kms−1.Thiswasfoundsufficienttore- 1 density profile). Table 2 lists the values of H densities for
turb 2
producethewidthofindividualhyperfinegroups,andiscom- 4 density laws, together with the temperature and abundance
parable to the thermal width contribution. A small rotational profilesthatbestfittedthedataineachcase(cf.nextsection).
6 L.Paganietal.:DepletionandlowgastemperatureintheL183prestellarcore:theN H+-N D+tool
2 2
Table2. The4maindensitylawsinvestigatedinourmodels,andthecorrespondingtemperatureandabundanceprofilesgiving
the bestfit to N H+ data in eachcase. The leftmostmodelgavethe bestoverallfit(see Table 3) andwas used to computethe
2
synthetic spectra in Figs. 1 and 2. Its best N2D+ abundanceprofile is also listed. Parameters are held constantinside a given
radialshell,exceptfortherotationalspeedwhichislinearlyinterpolated.2.34(6)reads2.34×106.
ρ∝r−1,r−2(Bestmodel)a ρ∝r−1 ρ∝r−1.5 ρ∝r−2
Radius V.rot. Density T Abundance Abundance Density T Abundance Density T Abundance Density T Abundance
kin kin kin kin
A.U. (kms−1) (cm−3) (K) N H+ N D+ (cm−3) (K) N H+ (cm−3) (K) N H+ (cm−3) (K) N H+
2 2 2 2 2
330 0 2.34(6)b 7 2.4(−11) 2(−11) 2.34(6)b 7 7(−11) 3.30(6)c 7 1(−11) 3.46(6)c 9 1(−11)
660 0 2.05(6)b 7 2.4(−11) 2(−11) 2.05(6)b 7 7(−11) 2.89(6)c 7 1(−11) 3.03(6)c 9 1(−11)
990 0 1.55(6)b 7 8.5(−11) 4(−11) 1.55(6)b 7 7(−11) 2.19(6)c 7 7(−11) 2.29(6)c 9 3(−11)
1320 0 1.16(6) 7 8.5(−11) 4(−11) 1.16(6) 7 7(−11) 1.19(6) 7 7(−11) 1.46(6) 9 3(−11)
1650 0 9.27(5) 7 8.5(−11) 4(−11) 9.27(5) 7 7(−11) 7.74(5) 7 7(−11) 9.09(5) 9 3(−11)
1980 0 7.73(5) 7 8.5(−11) 4(−11) 7.73(5) 7 7(−11) 5.55(5) 7 7(−11) 6.10(5) 9 3(−11)
2310 0 6.62(5) 7 1.1(−10) 3(−11) 6.62(5) 7 1(−10) 4.20(5) 7 4(−10) 4.39(5) 9 1(−10)
2640 0 5.80(5) 7 1.1(−10) 3(−11) 5.80(5) 7 1(−10) 3.34(5) 7 4(−10) 3.54(5) 9 1(−10)
2970 0 5.15(5) 7 1.1(−10) 3(−11) 5.15(5) 7 1(−10) 2.74(5) 7 4(−10) 2.68(5) 9 1(−10)
3300 0.01 4.64(5) 7 1.1(−10) 3(−11) 4.64(5) 7 1(−10) 2.29(5) 7 4(−10) 2.20(5) 9 1(−10)
3630 0.01 4.21(5) 7 1.5(−10) 3(−11) 4.21(5) 7 1.5(−10) 1.95(5) 7 3(−10) 1.83(5) 9 6(−10)
3960 0.01 3.54(5) 7 1.5(−10) 3(−11) 3.86(5) 7 1.5(−10) 1.70(5) 7 3(−10) 1.46(5) 9 6(−10)
4290 0.02 3.01(5) 7 1.5(−10) 3(−11) 3.57(5) 7 1.5(−10) 1.49(5) 7 3(−10) 1.22(5) 9 6(−10)
4620 0.02 2.60(5) 7 1.5(−10) 3(−11) 3.31(5) 7 1.5(−10) 1.32(5) 7 3(−10) 1.07(5) 9 6(−10)
4950 0.02 2.26(5) 7 1.3(−10) 5(−12) 3.09(5) 7 5(−11) 1.18(5) 7 3(−10) 9.27(4) 9 4(−10)
5280 0.05 1.99(5) 7 1.3(−10) 5(−12) 2.90(5) 7 5(−11) 1.07(5) 7 3(−10) 8.5(4) 9 4(−10)
5610 0.05 1.76(5) 7 1.3(−10) 5(−12) 2.73(5) 7 5(−11) 9.67(4) 7 3(−10) 7.20(4) 9 4(−10)
5940 0.05 1.57(5) 8 1.3(−10) 5(−12) 2.58(5) 8 5(−11) 8.82(4) 7 3(−10) 6.34(4) 9 4(−10)
6667 0.05 1.27(5) 8 1(−10) ≤4(−12) 2.02(5) 8 2.5(−11) 8.10(4) 7 1.5(−10) 5.25(4) 9 4(−10)
7733 0.05 8.50(4) 9 1(−10) ≤4(−12) 1.57(5) 9 2.5(−11) 6.77(4) 7 1.5(−10) 4.55(4) 9 4(−10)
8867 0.05 6.50(4) 10 1(−10) ≤4(−12) 8.50(4)d 10 2.5(−11) 5.42(4) 7 1.5(−10) 3.46(4) 9 4(−10)
10000 0.02 5.20(4) 11 1(−10) ≤4(−12) 5.20(4)d 11 2.5(−11) 4.41(4) 7 1.5(−10) 2.68(4) 9 4(−10)
13333 0 3.45(4) 12 1(−10) ≤4(−12) 3.45(4)d 12 2.5(−11) 3.68(4) 7 1.5(−10) 1.70(4) 9 4(−10)
a ρ∝r−1(r<4000AU),ρ∝r−2(r>4000AU)
b ThefirstthreelayerdensitiesdonotfollowapowerlawbutthedensityprofilederivedfromtheISOCAMabsorptionmap(Paganietal.
2004)
c Sameasnote(b)above,butrescaledtomaintainaconstanttotalcolumndensityof1.4×1023cm−2(seetext).
d Forthepureρ∝r−1case,densityisnotfallingofffastenoughtoreachambientclouddensityandwecorrectforthisinthelast3layers.
3.3.Selectioncriteria component allows to discard solutions with overall identical
areabutdifferenthyperfinelineratios;2)areaofthe5central
Our best fit selection criteria are based on the use of several channels(=0.15kms−1)ofeachhyperfinecomponentforthe
χ2 and(reduced)χ2ν estimates.BecausetheN2H+ (J:1–0)data samelines(49values),inordertorejectself-absorbedprofiles,
havemuchmoreoverallweightthanthe(J:3–2)data(moreiso- i.e. line profileswhich have the same total area but are wider
latedhyperfinegroupsperspectrum,moreobservedpositions, andself-absorbed;3)totalareaofthe(J:3–2)CSOspectrumat
highersignal-to-noiseratio),computingasingleχ2 permodel (24′′,0′′)(1value).Thissinglemeasurementhelpstoconstrain
ν
ishardlysensitivetothequalityofthe(J:3–2)linefit.However, the density profile; 4) total area of the (J:3-2) 30-m spectrum
the (J:1–0) spectra being optically thick, they give little con- (1value)whichconstrainstheabundance(andthetemperature
straintsonthe temperatureandN2H+ abundanceoftheinner- to some extent) at the core center. These four measurements
mostlayers(withina6′′radius).Thoseareonlyconstrainedby areofcoursenotcompletelyindependentfromeachother,and
theIRAM(J:3–2)observations.TheCSO (J:3–2)spectrumat trying to improveone fit by changinga model parameter can
(24′′,0′′)also addsinterestinginformationonthedensitypro- degrade one or several of the others. We used χ2 for the first
ν
file. two(with41degreesoffreedom)andχ2 forthelasttwo(only
onemeasurement)sothatinallcases∆χ2 ≈1isequivalentto
Toconstrainthemodelswethusevaluatethegoodnessoffit
independentlyforthe(J:1–0)and(J:3–2)data,bycomputingχ2 a1σdeviation.Withthischoice,a3σvariationisequivalentto
∆χ2 ≈1.5forthefirsttwoand∆χ2=9forthelasttwo.
valueson4typesofmeasurements:1)fullareaofeachofthe7 ν
(J:1–0)hyperfinecomponents,ateachofthe7offsetpositions Afterhavingrunallofthemodelsinourgrid,wefirstused
(49values).Thismeasurementissensitivetotheglobaltemper- a single,globalχ2 combiningthefourtypesofmeasurements
ν
atureandabundanceprofiles.Fittingseparatelyeachhyperfine tovisualizetheglobalfitqualityofthevariousmodels.Fig.3
L.Paganietal.:DepletionandlowgastemperatureintheL183prestellarcore:theN H+-N D+tool 7
2 2
3.4.PhysicalconditionsintheL183maincore
3.4.1. Densityandtemperaturestructure
Our best density-temperature combination (circled 5-branch
starsymbolinFig.3)hasadensitylawofr−1 outtor≈4000
A.U.,consistentwiththeISOCAMprofile(Paganietal.2004)
andaslopeofr−2 beyond.Thetemperatureisconstantat7K
out to 5600 A.U. and increases up to 12 K at the core edge
(see Table 2). Further increasing the number of warmer lay-
ers failed, as well as introducingwarmer layers in the center.
Keeping the temperature constant at 7 K everywhere signifi-
cantlyworsensthefitofthe(J:3–2)lines(seeTable3).
The main uncertainty in our temperature determination
Fig.3.Globalχ2foralldensityprofilesandtemperaturecases. stems from the assumed total gascolumndensity throughthe
ν
An arrow indicates that the majorityof the modellayers is at core. Decreasing/increasingit by a factor 1.4 (the typical un-
thegiventemperaturebutthatouterlayershaverisingtemper- certaintyfoundbyPaganietal.2004)changesallvolumeden-
atures.Onlyone(circled)solutionsatisfies all4individualχ2 sitiesbythesamefactor.TorecoverthesameN H+ emission,
2
fitting(seetext) wefindthatthekinetictemperatureinourmodelsmustbein-
creased/decreasedby≃1K(respectively,whiletheN H+abun-
2
dance must be scaled accordingly to keep the same column
density).Since thedusttemperatureintheL183coreis7.5±
plotstheglobalχ2asafunctionoftemperature,forthevarious 0.5K(Paganietal.2004),gasanddustarethermalizedinside
ν
density laws that we investigated. Symbols with arrows indi- thiscorewithintheuncertainties.
cate models where temperature rises in the outermost layers. AdifferentresultwasfoundbyBerginetal.(2006)inthe
Foreachdensity-temperaturepair,weplotonlythesmallestχ2 B68PSC,whereouterlayersemittinginCOareconsistentwith
ν
obtainedbyadjustingtheabundanceprofile. akinetictemperatureof7–8KwhileNH measurementsindi-
3
It is readily seen that the best fits are found for relatively cate a higher temperature of 10–11K in the inner 40′′. This
low overall core temperatures ≃ 6.5–8 K. Hence, the (J:1–0) inwardincreaseingastemperaturewasattributedtothelackof
data alone (which dominate the global χ2) set a strong con- efficient CO cooling in the depleted core center, and requires
ν
straint on the core temperature: indeed, the combination of an order of magnitude reduction in the gas to dust coupling,
strongopacityandrelativelylowintensityinthislinerequires possiblyduetograincoagulation(Berginetal.2006).Suchan
lowexcitationtemperature.Becausethe(J:1–0)lineshouldbe effectisnotseeninL183,despitestrongCO depletionwithin
thermalizedinthedensecenter,thisrulesoutkinetictempera- the inner1′= 6600AU radius.Ourbest fittemperaturelaw is
turesabove8K(forouradoptedtotalcolumndensityof1.4× moreconsistentwiththethermo-chemicalevolutionofslowly
1023cm−2). contractingprestellarcoreswithstandardgas-dustcouplingco-
Tofurtherdiscriminateamongmodels,wethenlookedin- efficients,whichpredictslowgastemperatures≃6Knearthe
dividuallyatthefourqualityindicatorsdescribedabove,inpar- corecenter,increasingto≃14Knearthecoresurface(Lesaffre
ticularthoserelatedtothe(J:3-2)lines.Table3liststhese4val- etal.2005).
ues as well as the globalχ2 for variousmodelsselected from
ν
Fig. 3, namely: the best model fits for a given constant core 3.4.2. N H+ abundanceprofile
2
temperature (from 6 to 10 K), and the best model fits for a
given density law (with correspondingtemperatureand abun- Withourbestdensity-temperaturemodel,severalN H+ abun-
2
dancedistributionsgiveninTable2). danceprofilesgiveequallygoodfits(within<1σonall4qual-
It can be seen in Table 3 that for T = 10 K the (J:3– ity indicators). From all these acceptable abundance profiles,
kin
2) lines are not well fitted (4 and 5 σ deviationsfor the CSO we determined a median profile (plotted as a solid histogram
and IRAM lines respectively),hence such a high temperature inFig.4a),witherrorbarsrepresentingtherangeofacceptable
seemsruledouthere.Overall,itisratherdifficultto havelow valuesineachlayer(thoughnotanycombinationoftheseval-
χ2 values in both the (J:1-0) and the (J:3-2) indicators. Only uesdoesfittheobservations).Thismedianprofile,whoseval-
onedensity-temperaturecombination(indicatedbyboldfaces uesarelistedinTable2,isusedtocomputethefitdisplayedin
in Table 3) reaches low values in all 4 individual χ2ν and χ2, Fig.1.ThetotalN2H+columndensityis1.2±0.1×1013cm−2,
eachwithin1σoftheirminimumvalue,amongallthemodels comparable with the value reported by Dickens et al. (2000)
inTable3.Thiscombinationisreferredtoasour“bestmodel” andafactorof∼2belowthatinCrapsietal.(2005).
in the following, and its inferred physicalparameters are dis- The maximum N H+ abundance is 1.5+0.4 × 10−10, the
2 −0.3
cussedinthenextsection.ItcanalsobenoticedinTable3that same as found by Tafalla et al. (2004) in L1498 and L1517.
themodelwithT = 7K hasaslightlybetterglobalχ2 than However,thereisadefinitedropinabundanceintheinnerlay-
kin ν
thebestmodel(2.1comparedto2.3)butistobeeliminatedas ers.Thisdropisimposedbythefittothe(J:3–2)IRAMcentral
the(J:3–2)linesare2and3.5σoffthemark. spectrum (9′′ beam), which is quite sensitive to variations in
8 L.Paganietal.:DepletionandlowgastemperatureintheL183prestellarcore:theN H+-N D+tool
2 2
Table 3. Quality of fit evaluated individuallyon four differentsets of measurements, and globalχ2, for selected models from
ν
Fig.3(seetext).Adifferenceof1correspondsto1σinallcases.Valuesforthebestmodelareinboldface.Thelastrowsshow
theeffectofchangingonlythecentralN H+ abundanceinthisbestmodel
2
(J:1–0) (J:3–2)
modelparameters Totalareaχ2 5channelsareaχ2 CSOTotalareaχ2 IRAMTotalareaχ2 Globalχ2
ν ν ν
Bestfitforeachtemperature(adjustedinabundance)
T=6K (ρ∝r−1,r−2) 4.7 3.8 1.5 1.0 3.9
T=7K (ρ∝r−1,r−2) 1.9 2.4 12.6 4.1 2.1
T=8K (ρ∝r−1.5) 3.1 3.2 0.2 3.4 2.9
T=9K (ρ∝r−2) 4.5 5.6 7.5 6.8 4.7
T=10K (ρ∝r−2) 4.8 6.3 16.9 28.7 5.5
Bestfitforeachdensitylaw(adjustedinabundance)
ρ∝r−1,r−2 (T=7→12K) 2.4 2.7 0.3 0.0 2.3
ρ∝r−1 (T=7→12K) 3.7 3.8 1.2 2.9 3.4
ρ∝r−1.5 (T=7K) 3.4 3.2 0.1 0.1 2.9
ρ∝r−2 (T=9K) 4.5 5.6 7.5 6.8 4.7
VaryingthecentralN H+abundanceatr<660AUinthebestmodel
2
X(N H+)= 10−12 2.6 2.8 0.3 2.0 2.5
2
X(N H+)= 8×10−12 2.6 2.8 0.3 1.0 2.5
2
X(N H+)= 2.4×10−11 2.4 2.7 0.3 0.0 2.3
2
X(N H+)= 8×10−11 2.1 2.4 0.5 9.2 2.1
2
Fig.4.aN D+ andN H+ abundancesforthebestmodel.ForN H+,themedianabundanceprofileisplotted(thecorresponding
2 2 2
modeloutputisdisplayedin Fig.1).Errorbarsindicatetherangeofpossiblevalues(seetext).ForN D+,a rangeofvaluesis
2
given:Theupper,dottedhistogramgivesthebestfittothe(J:2-1)and(J:3-2)lines,andwasusedtocomputethemodelinFig.2.
Thedashedhistogramgivesthebestfittothe(J:1-0)and(J:2-1)lines.bdensityprofileofthebestmodelandN D+/N H+ ratio
2 2
range
the central abundanceof N H+, as illustrated in the last rows resultsforN D+wouldfavoravalueofatleast10−11(seenext
2 2
ofTable3.Incontrast,the(J:1–0)lineisopticallythickatthe section).
corecenterandtheχ2isthusnotsensitivetothisparameter(cf.
ν Comparedwiththemaximumabundance,thisgivesavol-
Table3).
umedepletionfactorof≃ 6+13 atthe corecenter.Themedian
−3
Exploringabroadrangeofabundanceprofiles,wefindonly abundance drop is less than (but marginally consistent with)
alimitedrangeofpossibleN H+abundancesintheinnerlayer that expected from simple geometrical arguments in PPABC,
2
of 6′′ radius (r < 660 AU): values above 4.5×10−11 always butitconfirmsthatthelevelingofN H+ intensityseenacross
2
producetoostrong(J:3–2)emissioninthecentralIRAMbeam thedustpeakisnotduetopureopacityeffects.Ascanbeseen
(χ2 > 1), while abundances below 10−12 give a (J:3–2) line fromFig.4a-b,depletionstartsatadensityof5–7×105 cm−3
marginallytooweak.Wethusderivearangeof2.4+2.1×10−11 and increases as density goes up, in agreement with the con-
−2.3
for the central N H+ abundance. However, we note that our clusions of PPABC. The abundancealso drops slightly in the
2
L.Paganietal.:DepletionandlowgastemperatureintheL183prestellarcore:theN H+-N D+tool 9
2 2
outermost regions, possibly due to partial destruction by CO.
Indeed, the outermost layers of the model have densities of a
few104 cm−3 whichisthelimitabovewhichCO startstode-
pleteinthissource(PPABC).
3.4.3. N D+ abundanceprofile
2
As seen in Fig.2, goodfits to the N D+ data may be obtained
2
withthesamedensityandtemperatureprofileasourbestmodel
for N H+, although it is difficult to reproducesimultaneously
2
theintensitiesofboth(J:1-0)and(J:3-2)lines.WeplotinFig.
4a the N D+ abundance profiles giving the best fit either for
2
(J:1-0)and(J:2-1)(dashedhistogram)orfor(J:2-1)and(J:3-2)
Fig.5.GBTNH (1,1)inversionlinetowardsthereferencepo-
(dotted histogram). The latter was used to produce Fig. 2. A 3
sition with CLASS NH3 fit (shifted by +3 K for clarity) and
better fit could be obtained with a temperature of 8K instead
fitresidual(shiftedby-0.6K).Thefityieldsatotalopacityof
of7K.Thismightindicatethatthecollisionalcoefficientswith
24.2(±0.4),andaglobalvelocityof2.3672(±0.0002)kms−1
HearesomewhatinaccuratetorepresentthosewithH .Indeed,
2
ithasbeenshownforNH thatcollisionalcoefficientswithHe
3
coulddifferbyafactorupto4withrespecttothosecomputed
withpara-H2(Willeyetal.2002).Asimilarproblemmayoccur 3.5.ComparisonwithNH3 temperatureestimates
here(seealsothediscussioninDanieletal.2006a).Therefore
Thelowkinetictemperatures≤8KinferredfromourN H+and
2
we consider that the temperatures are compatible within the
N D+ modelling are somewhat lower than previous tempera-
uncertaintiesonthecollisionalcoefficients. 2
ture estimates in L183 from NH inversion lines, which gave
3
valuesintherange9–10K(Ungerechtsetal.1980,Dickenset
The N2D+ abundance profile is quite different from that al.2000)upto12K(Swadeetal.1989).However,theseNH3
of N2H+ (cf. Fig. 4a). Its abundance is essentially an upper spectra were not obtained towards the PSC center itself, and
limitbeyond6000A.U.Itincreasessharplybyaboutanorder hadrelativelylowangularresolutionforthelasttwo.We thus
of magnitude in the regionbetween 600 and 4000 A.U., then briefly reconsider this issue using our NH spectra obtained
3
slightly drops by a factor of 2–2.5 in the core center, reach- atthePSCcenterposition,whichalsobenefitfromthehigher
ing an abundancebetween 1.3 and 2×10−11. The low optical resolutionandbeamcouplingofthenewGBT.TheNH spec-
3
depth of the line (τ = 0.84 for the strongest hyperfine com- tra were analyzed in the standard way, as discussed by Ho &
ponent,JFF′:123–012)allowstomeasurethecontributionofall Townes(1983)andWalmsley&Ungerechts(1983).Usingthe
layers to the emission and to determine with relatively little CLASSNH3fittingprocedure,wefoundatotalopacityof24
uncertaintytheabundanceprofile.Inparticular,forthechosen forthe(1,1)inversionline,andanexcitationtemperatureof5.5
densityandtemperatureprofiles,wefindthattheabundanceof Kassumingabeamfilling-factorof1(Figs.5&6).Makingthe
N2D+ inthecenterofthecloudcannotbebelow10−11.Hence, usual assumption of constant temperatureon the line of sight
we can set tighter constraints on the N2D+ abundance at the and of negligible populationin the non-metastablelevels, the
corecenterthanwaspossibleforN2H+. intensity ratio of the (2,2) to (1,1) main lines indicates a ro-
tation temperature of 8.4±0.3K which should correspond to
The N2D+/N2H+ ratio obtained by comparing the N2D+ a kinetic temperatureof 8.6±0.3K. Hence, NH3 emission to-
range of abundances to the median N H+ abundance profile wardsthePSCcenterindicatesanonlyslightlyhigherkinetic
2
is plotted in Fig. 4b. The deuteration ratio varies from an up- temperaturethanN2H+ (8.6±0.3K insteadof7±1K),almost
perlimit≤0.05–0.1awayfromthecoretoaveryhighfactorof equaltothatobtainedwithN2D+ (∼8K).Thediscrepancybe-
0.7±0.12inthedepletionregion.ThisislargerthanwhatTine tweenNH3andN2H+isthusnotaslargeasoriginallythought.
etal.(2000)reported48′′furthernorthinthesamesource,and Bothtracerspointtoverycoldgasinthecore,closetothermal
3–4timeslargerthanwhatCrapsietal.(2005)reporttowards equilibriumwiththedust.
thePSC.Deuteriumenrichmentisthusverystrongandcancer- Reasonsfora possibledifferencebetweenNH andN H+
3 2
tainlybelinkedtothestrongandextendedH D+ linedetected temperaturedeterminationsin L183includethe following:1)
2
towardsthissource(Vasteletal.2006).Ifweconsiderthefull thehighersensitivityofNH tothewarmerouterlayersofthe
3
range of possible valuesfor N H+ itself, the deuterationratio core, since NH inversionlines are much easier to thermalize
2 3
intheinnerlayerrangesfrom∼0.3to≥20.However,asD H+ (n ≈ 2000 cm−3) than N H+ lines. 2) a slight overestimate
2 crit 2
hasnotbeendetectedinthissourcedespiteitsstrongH D+line in the total column density towards the PSC (reducing it to
2
(Vasteletal.2006),anenrichmentabove1seemsunprobable, 1023cm−2,thetemperaturehastoberaisedto8Ktocompen-
suggesting that the central abundanceof N H+ is probably at sateforthedensitydecreaseandrecoverthesameN H+ emis-
2 2
least10−11. sion).3)systematicerrorsintroducedbytheuseofcollisional
10 L.Paganietal.:DepletionandlowgastemperatureintheL183prestellarcore:theN H+-N D+tool
2 2
A coefficients of N H+. We also thank an anonymous referee and
ul 2
C.M.Walmsleyforsuggestionswhichhelpedtoimprovethispaper.
References
Bergin,E.A.,Alves,J.,Huard,T.,andLada,C.J.,2002,ApJL570,
L101
Bergin,E.A.,Maret,S.,vanderTak,F.F.S.,etal.,2006,ApJ645,369
Bernes,C.,1979,A&A73,67
Caselli,P.,Myers,P.C.,Thaddeus,P.,1995,ApJL455,L77
Crapsi,A.,Caselli,P.,Walmsley,C.M.,etal.,2005,ApJ619,379
Daniel, F., Dubernet, M.-L.,Meuwly, M., Cernicharo, J., Pagani, L.,
2005,MNRAS,363,1083
Daniel,F.,Dubernet,Cernicharo,J.,2006a,ApJ648,461
Daniel, F., Dubernet, Cernicharo, J., et al., 2006b, inJourne´es de la
SF2A,Paris,June2006.
Fig.6.GBTNH (2,2)inversionlinetowardsthereferencepo- DickensJ.E.,IrvineW.M.,SnellR.L.,etal.,2000,ApJ542,870
3
Dore, L.,Caselli,P.,Beninati,S.,Bourke, T.,Myers, P.C.,Cazzoli,
sition. A gaussian fit to the main line indicates a velocity of
2.362(±0.005)kms−1 G.2004,A&A413,1177
Gerin, M., Pearson, J.C., Roueff, E., Falgarone, E., Phillips, T.G.,
2001,ApJ551,L193
coefficientswithHeinsteadofH forN H+(seeSect.3.4.3).4) Go´nzalez-Alfonso,E.,&Cernicharo,J.1993,A&A279,506
2 2
concerningNH , standardhypothesesleadsto a puzzlingdis- Greve,A.,Kramer,C.,Wild,W.,1998,A&ASS133,271
3
crepancy between T = 5.5 K and T = 8.4 K towards the Ho,P.T.P.&Townes,C.H.,1983,ARAA21,239
ex rot
L183 PSC center, where NH inversion lines should be fully Kukolich,S.G.,1967,Phys.Rev.,156,83
3
Lesaffre,P.,Belloche,A.,Chie`ze,J.-P.,Andre´,P.2005,A&A443,961
thermalized.Beamdilutionhasbeeninvokedforgiantmolec-
Pagani,L.,Bre´artdeBoisanger,C.,1996,A&A312,988
ularclouds(thusincreasingT ),butitseemsunreasonableto
ex Pagani,L.,1998,A&A333,269
extendthisto dense cloudcores(Swade 1989, and references
Pagani,L.,Bacmann,A.,Motte,F.,etal.2004,A&A,417,605
therein).AMonte-Carlocode(orequivalent)wouldbeneeded
Pagani, L., Pardo, J.-R.,Apponi, A.J., Bacmann, A., and Cabrit, S.,
tomodelNH takingintoaccountthestrongdensitygradients
3 2005,A&A429,181(PPABC)
presentinPSCs,andthepossiblepopulationofnon-metastable Swade,D.A.,1989,ApJ,345,828
levelsatveryhighdensities. Tafalla, M., Myers, P.C., Caselli, P., Walmsley, C.M., Comito, C.,
2002,ApJ569,815
Tafalla,M.,Myers,P.C.,Caselli,P.,Walmsley,C.M.,2004,A&A416,
4. Conclusions
191
1. We have presented a new Monte-Carlo code (available Teyssier,D.,Hennebelle,P.,Pe´rault,M.,2002,A&A,382,624
upon request to the author) to compute more realistically Tine´,S.,Roueff,E.,Falgarone,E.,Gerin,M.,PineaudesForeˆts,G.,
theNLTEemissionofN H+andN D+,takingintoaccount 2000,A&A356,1039
2 2
Ungerechts,H,Walmsley,C.M.,Winnewisser,G.,1980A&A,88,259
bothlineoverlapandhyperfinestructure.Thiscodemaybe
Vastel,C.,Phillips,T.G.,Caselli,P.,Ceccarelli,C.,Pagani,L.2006,
usedtoinfervaluableinformationonphysicalconditionsin
proceedingsoftheRoyalSocietymeetingPhysics,Chemistry,and
PSCs.
AstronomyofH+[arXiv:astro-ph/0605126]
2. ThebestkinetictemperaturetoexplainN H+ observations
2 Walmsley,C.M.,&Ungerechts,H.,1983,A&A122,164
oftheL183maincoreis7±1K(and∼8KforN2D+)inside Walmsley, C. M., Flower, D. R.,Pineau des Foreˆts, G. 2004, A&A,
5600 AU, therefore gas appears thermalized with dust in 418,1035
thissource. Willey, D.R., Timlin, R.E., Jr, Merlin, J.M., Sowa, M.M., Wesolek,
3. There is no major discrepancy with NH measurements W.M.,2002ApJS,139,191
3
whichalsoindicateverycoldgas(8.6±0.3K)towardsthe
PSC.
ListofObjects
4. We have found a noticeable depletion of N H+ by a fac-
2
torof6+13,andofN D+ byasmallerfactorof2–2.5.This ‘L183’onpage2
−3 2
smaller depletion is probably due to a strong (0.7±0.12)
deuterium fractionation, consistent with the detection of
H D+inthiscore.
2
5. N D+ should be a useful probe of the innermost core re-
2
gions, thanks to its low optical depth combined with its
strongenhancement.
Acknowledgements. WethanktheIRAMdirectionandstafffortheir
support, S.Le´onfor hisdedicated assistanceduring pool observing,
andF.Daniel forprovidingroutinestocompute thefrequencies and