Table Of ContentSpringerSeries in
ADVANCED MICROELECTRONICS 34
SpringerSeriesin
ADVANCED MICROELECTRONICS
SeriesEditors:K.Itoh T.H.Lee T.Sakurai W.M.C.Sansen D.Schmitt-Landsiedel
The Springer Series in Advanced Microelectronics provides systematic information on all
thetopicsrelevantforthedesign,processing,andmanufacturingofmicroelectronicdevices.
Thebooks,eachpreparedbyleadingresearchersorengineersintheirfields,coverthebasic
and advanced aspects of topics such as wafer processing, materials, device design, device
technologies, circuit design, VLSI implementation, and subsystem technology. The series
formsabridgebetweenphysicsandengineeringandthevolumeswillappealtopracticing
engineersaswellasresearchscientists.
Forfurthervolumes:
www.springer.com/series/4076
Philip Teichmann
Adiabatic Logic
Future Trend and System Level
Perspective
Dr.-Ing.PhilipTeichmann
LehrstuhlfürTechnischeElektronik
TechnischeUniversitätMünchen
Arcisstrasse21
80333Munich
Germany
[email protected]
SeriesEditors:
Dr.KiyooItoh
HitachiLtd.,CentralResearchLaboratory,1-280Higashi-Koigakubo,Kokubunji-shi,Tokyo
185-8601,Japan
ProfessorThomasH.Lee
Department of Electrical Engineering, Stanford University, 420 Via Palou Mall, CIS-205
Stanford,CA94305-4070,USA
ProfessorTakayasuSakurai
CenterforCollaborativeResearch,UniversityofTokyo,7-22-1Roppongi,Minato-ku,Tokyo
106-8558,Japan
ProfessorWillyM.C.Sansen
ESAT-MICAS, Katholieke Universiteit Leuven, Kasteelpark Arenberg 10, 3001 Leuven,
Belgium
ProfessorDorisSchmitt-Landsiedel
LehrstuhlfürTechnischeElektronik,TechnischeUniversitätMünchen,Theresienstrasse90,
GebäudeN3,80290Munich,Germany
ISSN1437-0387 SpringerSeriesinAdvancedMicroelectronics
ISBN978-94-007-2344-3 e-ISBN978-94-007-2345-0
DOI10.1007/978-94-007-2345-0
SpringerDordrechtHeidelbergLondonNewYork
LibraryofCongressControlNumber:2011941857
©SpringerScience+BusinessMediaB.V.2012
Nopartofthisworkmaybereproduced,storedinaretrievalsystem,ortransmittedinanyformorby
anymeans,electronic,mechanical,photocopying,microfilming,recordingorotherwise,withoutwritten
permissionfromthePublisher,withtheexceptionofanymaterialsuppliedspecificallyforthepurpose
ofbeingenteredandexecutedonacomputersystem,forexclusiveusebythepurchaserofthework.
Coverdesign:VTeXUAB,Lithuania
Printedonacid-freepaper
SpringerispartofSpringerScience+BusinessMedia(www.springer.com)
Preface
Adiabatic Logic is a potential successor for static CMOS circuit design when it
comestoultra-low-powerenergyconsumption.Futuredevelopmentliketheevolu-
tionaryshrinkingoftheminimumfeaturesizeaswellasrevolutionarynoveltransis-
torconceptswillchangethegatelevelsavingsgainedbyAdiabaticLogic.Inaddi-
tion,theimpactofworseningdegradationeffectshastobeconsideredinthedesign
ofadiabaticcircuits.Theimpactofthetechnologytrendsonthefiguresofmeritof
AdiabaticLogic,energysavingpotentialandoptimumoperatingfrequency,arein-
vestigated,aswellasdegradationrelatedissues.Adiabaticlogicbenefitsfromfuture
devices, is not susceptible to Hot Carrier Injection, and shows less impact of Bias
TemperatureInstabilitythanstaticCMOScircuits.Majorinterestalsoliesontheef-
ficientgenerationoftheappliedpower-clocksignal.Thisoscillatingpowersupply
canbeusedtosaveenergyinshortidletimesbydisconnectingcircuits.Anefficient
way to generate the power-clock is by means of the synchronous 2N2P LC oscil-
lator,whichisalsorobustwithrespecttopattern-inducedcapacitivevariations.An
easytoimplementbutpowerfulPower-ClockGatingsupplementisproposedbygat-
ingthesynchronizationsignals.Diverseimplementationstoshutdownthesystem
are presented and rated for their applicabilityand other aspects like energy reduc-
tioncapabilityanddataretention.AdvantageoususageofAdiabaticLogicrequires
compactandefficientarithmeticstructures.Abroadvarietyofadderstructuresanda
CoordinateRotationDigitalComputerarecomparedandratedaccordingtoenergy
consumptionandareausage,andtheresultingenergysavingpotentialagainststatic
CMOSprovestheultra-low-powercapabilityofAdiabaticLogic.Intheend,anew
circuittopologyhastocompetewithstaticCMOSalsoinproductivity.Ona130nm
testchip,alargescaletestvehiclecontaininganFIRfilterwasimplementedinAdi-
abatic Logic, utilizing a standard, library-based design flow, fabricated, measured
andcomparedtosimulationsofastaticCMOScounterpart,withmeasuredsaving
factors compliant to the values gained by simulation. This leads to the conclusion
thatAdiabaticLogicisreadyforproductivedesignduetocompatibilitynotonlyto
CMOStechnology,butalsotoelectronicdesignautomation(EDA)toolsdeveloped
forstaticCMOSsystemdesign.
Munich,Germany PhilipTeichmann
v
Acknowledgements
Presenteddatainthisworkisaresultofmyemploymentasaresearchassistantatthe
LehrstuhlfürTechnischeElektronik(LTE)attheTechnischeUniverstitätMünchen.
PhDthesesattheLTEdealingwithAdiabaticLogicwerepublishedbyEttoreAmi-
rante and Jürgen Fischer previously. Ettore and Jürgen have supplied the basis for
my work on Adiabatic Logic. Jürgen was my roommate for a couple of years and
wehadmanyfruitfuldiscussions.
The opportunity to work at the LTE was offered to me by my supervisor and
head of the institute, Professor Doris Schmitt-Landsiedel. She supported the work
onAdiabaticLogicwithalotofenlighteninginputandpersonaleffort.Iwouldlike
to thank her for giving me the chance to be a part of the team at LTE. I always
enjoyed being a member of a team that is composed of committed and inspiring
people. A lot of input has come from the colleagues working on diverse fields of
researchattheinstitute.
FurthermoreIwanttousetheopportunitytothankmyparentsfortheirsupport
andtheirpatiencealongthislongacademicjourney.Veronika,youmanagedtokeep
memotivatedduringalmostallstagesofthiswork.
The Deutsche Forschungsgemeinschaft(DFG) supported the research on Adia-
baticLogicintheSchwerpunktprogrammVIVA.WithintheVIVAprojectIworked
togetherwithProf.JürgenGötzefromtheTechnischeUniversitätDortmund.Prof.
JürgenGötzeconfirmedtobethesecondsupervisorofthisthesis,Iamverygrateful
forhiseffort.
PhilipTeichmann
vii
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 MotivationforThisWork . . . . . . . . . . . . . . . . . . . . . . 1
1.2 ABriefHistoryofReversibleComputationandAdiabatic
Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
2 FundamentalsofAdiabaticLogic . . . . . . . . . . . . . . . . . . . . 5
2.1 TheChargingProcessinAdiabaticLogicCompared
toStaticCMOS . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.1.1 TheDefinitionoftheEnergySavingFactor(ESF) . . . . . 8
2.2 AnAdiabaticSystem . . . . . . . . . . . . . . . . . . . . . . . . 8
2.2.1 IntroducingAdiabaticLogicFamiliesUsedinThisWork . 8
2.2.2 TheFour-PhasePower-Clock . . . . . . . . . . . . . . . . 9
2.3 LossMechanismsinAdiabaticLogic . . . . . . . . . . . . . . . . 10
2.3.1 ImpactofProcessVariationsontheLossesinAdiabatic
Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.4 VoltageScaling—AComparisonofStaticCMOSandAdiabatic
Logic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.5 PropertiesofAdiabaticLogicandResultantDesignConsiderations 15
2.5.1 Dual-RailEncodedSignals . . . . . . . . . . . . . . . . . 15
2.5.2 InherentPipelining. . . . . . . . . . . . . . . . . . . . . . 17
2.5.3 DelayConsiderationsinAdiabaticLogic . . . . . . . . . . 18
2.5.4 ThePowerSupplyNetinAdiabaticLogic:Crosstalk,
iR-drop,Ldi-drop,Electromigration . . . . . . . . . . . . 18
dt
2.6 GeneralSimulationSetup . . . . . . . . . . . . . . . . . . . . . . 21
3 FutureTrendinAdiabaticLogic . . . . . . . . . . . . . . . . . . . . 23
3.1 ScalingTrendsforSub90nmTransistors . . . . . . . . . . . . . . 24
3.2 AdiabaticLogicwithNovelDevices . . . . . . . . . . . . . . . . 30
3.2.1 WhatShouldanIdeal(Novel)DeviceforAdiabaticLogic
LookLike? . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.2.2 AdiabaticLogicwithCarbonNanotubes(CNT) . . . . . . 36
ix
x Contents
3.2.3 Adiabatic Logic with the Vertical Slit Field Effect
Transistor(VESFET) . . . . . . . . . . . . . . . . . . . . 43
3.3 (Negative)BiasTemperatureInstability((N)BTI)andHotCarrier
Injection(HCI)inAdiabaticLogic . . . . . . . . . . . . . . . . . 51
3.3.1 ImpactofNBTIontheEnergyDissipationofAdiabatic
LogicCircuits . . . . . . . . . . . . . . . . . . . . . . . . 52
3.3.2 ComparisonoftheStressDuetothePermanentNBTIin
StaticCMOSandAL . . . . . . . . . . . . . . . . . . . . 58
3.3.3 HowWillPositiveBiasTemperatureInstability(PBTI)
ImpactAdiabaticLogic?. . . . . . . . . . . . . . . . . . . 61
4 GenerationofthePower-Clock . . . . . . . . . . . . . . . . . . . . . 65
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.2 TopologiesofInductor-BasedPower-ClockGenerators . . . . . . 67
4.3 ImpactofPattern-InducedCapacitiveVariationsontheEnergy
DissipationoftheSynchronized2N2PLC-oscillator . . . . . . . . 69
4.3.1 ImpactofPattern-InducedVariationsontheDissipationof
aDiscrete-CosineTransformation(DCT)System. . . . . . 71
4.4 GenerationoftheSynchronizationSignals . . . . . . . . . . . . . 72
4.4.1 SynchronousVersusAsynchronousGenerationofthe
ControlSignalsfortheOscillator . . . . . . . . . . . . . . 73
4.4.2 PartitionsoftheEnergyLossesWithinanAdiabaticSystem 77
5 Power-ClockGating . . . . . . . . . . . . . . . . . . . . . . . . . . . 83
5.1 IntroductiontoPower-ClockGating . . . . . . . . . . . . . . . . . 83
5.2 TheTheoryofPower-ClockGating . . . . . . . . . . . . . . . . . 84
5.3 GatingTopologiesforPCG . . . . . . . . . . . . . . . . . . . . . 86
5.3.1 Cut-offwithPower-downTransistors . . . . . . . . . . . . 86
5.3.2 Power-downofthePower-ClockOscillator . . . . . . . . . 101
5.4 Power-downModefortheSynchronous2N2PLC-oscillator . . . . 107
6 ArithmeticStructuresinAdiabaticLogic . . . . . . . . . . . . . . . 113
6.1 DesignofArithmeticStructures . . . . . . . . . . . . . . . . . . . 114
6.1.1 FrameworkfortheEstimationofE andA . . . . . 115
diss active
6.1.2 Ripple-CarryAdder(RCA) . . . . . . . . . . . . . . . . . 115
6.1.3 Parallel-PrefixAdders(PPA) . . . . . . . . . . . . . . . . 119
6.2 OverheadReductionbyApplyingComplexGates . . . . . . . . . 128
6.2.1 ImpactofIncreasedInputStackontheEnergyDissipation. 129
6.2.2 Case Study:Energy, LatencyandArea Reductionby
ApplyingComplexGatesintheRCAStructure. . . . . . . 130
6.3 Multi-operandAddersandtheCORDICAlgorithm . . . . . . . . 136
6.3.1 NestedRCAStructure . . . . . . . . . . . . . . . . . . . . 136
6.3.2 TheCarry-SaveAdder(CSA)Structure . . . . . . . . . . . 137
6.3.3 ACORDIC-BasedDiscreteCosineTransformation(DCT) 138
7 MeasurementResultsofanAdiabaticFIRFilter . . . . . . . . . . . 145
7.1 StructureoftheAdiabaticFIRFilter . . . . . . . . . . . . . . . . 145
7.2 MeasurementResultsandComparisontoStaticCMOS . . . . . . 149
Contents xi
8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165
Abbreviations
α signalactivityfactor
(cid:2)
α velocitysaturationfactor(alpha-powerlaw)
A,B invertedinputsignalsoflogicgates
A crosssectionarea
∗
A activegatearea
a ,b inputbiti
i i
A,B inputsignalsoflogicgate
AL adiabaticlogic
AST adiabaticsignaltest
BK brent-kungPPA
BTI biastemperatureinstability
(cid:4)
C chiralvector
h
C capacitance
C ,C capacitanceoflogicblockF andF
F F
c carrybiti
i
c filtercoefficienti
i
cl bitl offiltercoefficienti
i
C loadcapacitance
L
C replacementcapacitance
R
C switchcapacitance
S
C tunablecapacitance
T
C specificoxidecapacitance
OX
CLA carry-lookaheadadder
CMOS complementarymetaloxidesemiconductor
CNT carbonnanotube
CNTFET carbonnanotubefieldeffecttransistor
CORDIC coordinaterotationdigitalcomputer
CSA carry-saveadder
CSEA carry-selectadder
CVSL cascodevoltageswitchlogic
(cid:3)C deviationoftheadiabaticloadcapacitance
AL
xiii