Table Of ContentN° d’ordre : UEB/UR1 ANNÉE 2015
THÈSE / UNIVERSITÉ DE RENNES 1
sous le sceau de l’Université Européenne de Bretagne
pour le grade de
DOCTEUR DE L’UNIVERSITÉ DE RENNES 1
Mention : Physique
Ecole doctorale (Science de la Matière)
présentée par
Ramona Mhanna
Préparée à l’unité de recherche UMR 6251, IPR
et à l’Institut Laue-Langevin, ILL
Institut de Physique de Rennes
UFR Sciences et Propriétés de la Matière
Confinement-induced Soutenance prévue à Rennes
le 29 octobre 2015
nano-segregation
devant le jury composé de :
of binary liquids with
Natalie MALIKOVA
Chargée de Recherche CNRS, Univ. Paris 6 / rapportrice
amphiphilic
Patrick JUDEINSTEIN
interactions Directeur de Recherche CNRS, CEA Saclay / rapporteur
Marianne IMPEROR-CLERC
Directrice de Recherche CNRS, Univ. Paris-sud /
examinatrice
Renaud DENOYEL
Directeur de Recherche CNRS, Univ. d'Aix-Marseille /
examinateur
Ronan LEFORT
Maître de Conférences, Univ. Rennes 1 / examinateur
Denis MORINEAU
Directeur de Recherche CNRS, Univ. Rennes 1 / directeur
de thèse
Bernhard FRICK
Chercheur, Institut Laue-Langevin, Grenoble / co-
directeur de thèse
ACKNOWLEDGEMENTS:
I did my PhD in co-direction between the Institute of Physics of Rennes (IPR) (nanosciences and
materials department) and the Institute of Laue Langevin. My utmost thanks and sincere gratitude
go to my thesis directors (Dr. Denis MORINEAU and Dr. Bernhard FRICK) and my co-director
(Dr. Ronan LEFORT) whose continued support and encouragement made this project possible.
Denis, know that your words of wisdom and advice have always been received with highest
degrees of respect. Your support, confidence and commitment to this project were instrumental to
its successful completion. A wise saying that I have recently heard is: “don’t pick a job, pick a
boss, as your first boss is the biggest factor in your career success. A boss who doesn’t trust you
won’t give you opportunities to grow. ” I couldn’t have picked more wisely, you are my role model
and you have inspired me in so many ways both at the personal and scientific levels and for that
I’ll be forever grateful. I extend my thanks and gratitude to Bernhard who has shown me that there
is no limit to aspiration. It was a great honor and a privilege to work with you and I’ll always be
looking up to you when I think of dedication to science. I genuinely appreciate your honesty,
persistence and fruitful scientific discussions which have been invaluable for the thesis. My sincere
gratitude also goes to Ronan who has played a great role in this thesis and enormously attributed
to its success. I am greatly thankful for your assistance, advice and support and I am quite happy
that I had the opportunity to work with someone with such scientific and human qualities.
I would also like to express my gratitude towards all the jury members (Renaud DENOYEL “jury
president”, Marianne IMPEROR-CLERC, Patrick JUDEINSTEIN and Natalie MALIKOVA) for
accepting to be a part of this long process. In your own ways, you have each added to this project
and helped shape me both as a student and a researcher.
Much gratitude goes to the management of the IPR (Jean-Pierre LANDESMAN) and the ILL
(Helmut SCHOBER) for welcoming me in their institutes. My appreciation extends to all the IPR
and ILL staff for making me feel like home over the last three years. A particular thanks goes to
the members of the nanosciences department and the administrative service at the IPR as well as
the student body at the ILL.
A very special thought goes to my friends in France (in particular Rennes and Grenoble) and
Lebanon for being there for me. I have a special place in my heart for all of you, thank you for
being my big family. In addition, I would like to thank some teachers or rather mentors who
inspired me to become who I am today. A huge thanks goes to you Dr. Daoud, Dr. Fares, Dr. Hala,
Miss Nyola, Miss Abir, Mr. Majid, Miss Sumer and Mr. Hamad.
Last but not least, I want to dedicate this thesis to my father (my hero, my supporter, my
everything), my loving mother, my sisters, my brothers, my sister in law and my extended family
who have always supported me. I am so lucky to have you. Your faith in me, your unconditional
love and my eagerness to make you proud served as a driving force in my work.
This project has been, without any doubt, the largest test of my own commitment, spanning three
years away from my family and loved ones. But I have not achieved this alone. Along the way, I
have received so much support from too many people to count. I definitely wouldn’t have done it
if some of you weren’t in my life. Thank you for all the gracious sacrifices you have made for me
while I realized this goal. Though you may not see your names here, know that your various
contributions have not gone unnoticed or unappreciated.
TABLE OF CONTENTS:
Chapter I: Scientific Case………………………………………………………………….. 1
I.A. Introduction………………………………………………………………………………3
I.B. Confinement Effects……………………………………………………………………...5
I.B.1. Effect on Phase Transitions……………………………………………………... 5
I.B.1.1. Melting /Crystallization in Confinement………………………………...5
I.B.2.Effect on Dynamics……………………………………………………………… 7
I.B.2.1. Concept of Glass Transition…………………………………………..…7
I.B.2.2. Dynamics of Confined Super-cooled Liquids………………………….10
I.B.3.Effect on Structure………………………………………………………………13
I.B.3.1. Density Change………………………………………………………... 13
I.B.3.2. Self-assemblies in Confinement………………………………………..14
I.B.4. Phase Separation of Binary Liquids………………………………………….. ..16
I.C. Aim of the Thesis………………………………………………………………………. 20
I.D. Organization of the Thesis……………………………………………………………... 21
References…………………………………………………………………………………... 22
Chapter II: Liquids and Materials……………………………………………………….. 27
II.A. Introduction…………………………………………………………………………… 29
II.B. Liquids………………………………………………………………………………… 30
II.B.1. Tert-Butyl Alcohol……………………………………………………………. 31
II.B.2. Methanol……………………………………………………………………… 32
II.B.3.Ethanol………………………………………………………………………… 33
II.B.4. Toluene……………………………………………………………………..… 33
II.B.5. Cyclohexane…………………………………………………………………... 34
II.C. Confining Materials…………………………………………………………………… 35
II.C.1. Types of Porous Materials……………………………………………………. 35
II.C.1.1. Microporous Materials………………………………………………...35
II.C.1.2. Mesoporous Materials………………………………………………... 36
II.C.2.Synthesis………………………………………………………………………. 39
II.C.2.1. Synthesis of MCM-41………………………………………………... 39
II.C.2.2. Synthesis of SBA-15…………………………………………………. 40
II.C.2.3. Synthesis of CMK-3.……………………………………………….… 41
II.C.3. Characterization………………………………………………………………. 42
II.C.3.1. Microscopy…………………………………………………………… 42
II.C.3.2. Diffraction……………………………………………………………..44
II.C.3.3. Adsorption Isotherms………………………………………………… 47
II.C.3.4. Analysis of the Adsorption Isotherms………………………………... 49
II.C.3.5. Characterization of the Matrices………………………………………53
References …………………………………………………………………………………. 54
Chapter III: Supermolecular Order in Bulk…………………………………………….. 59
III.A. Introduction…………………………………………………………………………... 61
III.B. Methods………………………………………………………………………………. 63
III.B.1. General Background…………………………………………………………. 63
III.B.2. Experimental…………………………………………………………………. 64
III.B.3. Data Reduction………………………………………………………………. 64
III.C. Results and discussion……………………………………………………………….. 66
III.C.1. TBA-Tol/ Cyc Systems……………………………………………………… 66
III.C.1.2. Experimental Results…………………………………………………66
III.C.1.3. Ornstein-Zernike Analysis……………………………………………67
III.C.1.4 Bhatia and Thornton Analysis……………………………………...… 69
III.C.1.5. Kirkwood-Buff Analysis……………………………………..……… 72
III.C.2. Meth/Eth-Tol Systems……………………………………………………….. 74
III.D. Conclusion…………………………………………………………………………….77
References…………………………………………………………………………………... 78
Chapter IV: Local Order of Confined Binary Liquids…………………………………..81
IV.A. Introduction…………………………………………………………………………...83
IV.B. Methods and Principles………………………………………………………………. 84
V.B. 1. the Concept of Contrast variation: …………………………………………... 84
V.B.2. the Contrast Effect……………………………………………………………. 84
IV.C. SANS Measurements on Confined Mixtures………………………………………… 87
IV.C.1. Sample Preparation and Data Treatment…………………………………….. 87
IV.D. Experimental Results …………………………………………………………………89
IV.D.1. Contrast effect of the mixture of one single isotope liquid (D / H) ………….89
IV.D.2. Contrast Effect in Binary Mixtures Satisfying CM Condition ……………….90
IV.D.3. Symmetrical Mixtures with Equivalent Scattering length Densities…………91
IV.E. Structural Models ……………………………………………………………………..92
IV.E.1. Choice of Model………………………………………………………………92
IV.E.2. Theoretical Background………………………………………………………94
IV.E.2.1. Homogeneous Filling…………………………………………………94
IV.E.2.2. Core-Shell Model …………………………………………………….95
IV.E.2.3. Debye Waller Factor Model ………………………………………….96
IV.E.2.4. Microporous Corona Model ………………………………………….98
IV.F. Data Analysis………………………………………………………………………...100
IV.F.1. Data Treatment………………………………………………………………100
IV.F.1.1. Background Corrections …………………………………………….100
IV.F.1.2. Analysis of Bragg Scattering ………………………………………..100
IV.F.1.3. Model Calculations ………………………………………………….101
IV.F.2.Discussion of Data in Terms of Reliability of Models ………………………103
IV.F.2.1.Debye Waller Factor Model …………………………………………103
IV.F.2.2.Microporous Corona Model ………………………………………...115
IV.G. Conclusion …………………………………………………………………….119
References …………………………………………………………………………………121
Chapter V: Dynamics of Confined Binary Mixtures…………………………………... 123
V.A. Introduction …………………………………………………………………………..125
V.B. Glass Transition Measurements………………………………………………………126
V.B.1. Tg from Differential Scanning Calorimetry………………………………….126
V.B.1.1. Tg in Pure Compounds ………………………………………………126
V.B.1.2. Tg in Binary Mixtures ……………………………………………….128
V.B.2. Dielectric Studies of Mixtures ……………………………………………….129
V.B.2.1. Decoupling of the Different Modes………………………………….129
V.C. Quasielastic Neutron Scattering ……………………………………………………130
V.C.1. Theoretical Background ……………………………………………………130
V.C.2. Neutron Backscattering (BS) ………………………………………………132
V.C.2.1. Elastic-Inelastic Fixed Window Scans ………………………………133
V.D. Experimental Details …………………………………………………………………134
V.D.1. Sample Preparation ………………………………………………………….134
V.D.2. Experimental Conditions …………………………………………………….134
V.D.3. Data Treatment ………………………………………………………………135
V.E. Results and Discussion ……………………………………………………………….136
V.E.1 Pure components in SBA-15 ………………………………………………….136
V.E.1.1. Elastic Fixed Window Scans…………………………………………136
V.E.1.2. Mean Square Displacement (MSD) ………………………………….137
V.E.1.3. Conclusion …………………………………………………………139
V.E.2. Binary Mixtures in SBA-15 ………………………………………………….141
V.E.2.1. Contribution from Deuterated Components …………………………141
V.E.2.2 Elastic fixed Window Scans ………………………………………….144
V.E.2.3. Mean Square Displacement (MSD) ………………………………….149
V.E.3. Binary Mixtures in MCM-41 ………………………………………………150
V.E.3.1. Elastic Fixed Window Scans ………………………………………150
V.F. Conclusion ……………………………………………………………………152
References …………………………………………………………………………………153
GENERAL CONCLUSION…………………………………………………………….. 155
Annex: Q-Dependence of EFWS………………...……………………………………………i
Chapter I: Scientific Case
CHAPTER I:
SCIENTIFIC CASE
1
Chapter I: Scientific case
2
Description:the core-shell model depicting the preferential affinity of water to the AAO pore walls with a. TEA-rich density ρshell and surrounded by the AAO matrix of scattering length density ρAl2O3. [58]. B. A. 61‐66. 17. Shulgin, I. and E. Ruckenstein, Kirkwood‐Buff integrals in aqueous alcohol sys