Table Of ContentHg-Ho 1
Hg-Ho (Mercury-Holmium)
Phase diagram
Experimentally determined phase equilibria are not known. Moffatt [86Mof1] assumed that the phase
diagram is similar to that of Hg-La and Hg-Pr systems. Supposing this, he sketched a phase diagram at
constrained pressure, which has been redrawn by Massalski [90Mas1]. From there information was taken
to construct Fig. 1.
Fig. 1. Hg-Ho. Phase diagram at constrained vapor condition.
Crystal structure
The crystallographic data of intermediate phases are summarized in Table 1.
There are some discrepancies concerning Hg Ho (see Massalski [90Mas1], Iandelli et al. [79Ian1],
4
Kirchmayr et al. [66Kir1] and Merlo et al. [79Mer1]).
Landolt-B(cid:246)rnstein
New Series IV/5
Hg-Ho 2
Table 1. Hg-Ho. Crystal structure and lattice parameters of intermediate phases.
Phase Structure Type a [nm] c [nm] Ref.
Hg Ho hex Ni Sn 0.6526 0.4872 66Pal2
3 3
Hg Ho hex AlB 0.4803 0.3464 64Kir2
2 2
Hg Ho hex Cd Ce 0.4798 0.3470 68Ian1
2 2
HgHo cub CsCl 0.3660 65Ian1
References
64Kir2 Kirchmayr, H.R.: Monatsh. Chem. 95 (1964) 1667
65Ian1 Iandelli, A., Palenzona, A.: J. Less-Common Met. 9 (1965) 1
66Kir1 Kirchmayr, H.R., Lugscheider, W.: Z. Metallkd. 57 (1966) 725
66Pal2 Palenzona, A.: J. Less-Common Met. 10 (1966) 290
68Ian1 Iandelli, A., Palenzona, A.: J. Less-Common Met. 15 (1968) 273
79Ian1 Iandelli, A., Palenzona, A.: "Handbook on the Physics and Chemistry of Rare Earths", K.A.
Gschneidner jr., L. Eyring, (eds.), Amsterdam: North-Holland Publ. Co., Vol. 2 (1979) 1
79Mer1 Merlo, F., Fornasini, M.L.: J. Less-Common Met. 64 (1979) 221
86Mof1 Moffatt, W.G.: "Binary Phase Diagrams Handbook", Gen. Electr. C., Schenectady, N.Y.
(1986)
90Mas1 Massalski, T.B. (editor-in-chief): "Binary Alloy Phase Diagrams", Second Edition, Vol. 3,
T.B. Massalski (editor-in-chief), Materials Information Soc., Materials Park, Ohio (1990)
Landolt-B(cid:246)rnstein
New Series IV/5
Hg-In 1
Hg-In (Mercury-Indium)
Phase diagram
Investigations of phase equilibria have been performed mainly by Morawietz [64Mor1], Claeson et al.
[66Cla1] and Hellner et al. [70Hel1]. Phase equilibria have been reported and discussed by Ito et al.
[51Ito1], Spicer et al. [53Spi1], Kozin et al. [61Koz1, 69Koz1, 70Koz1], Chiarenzelli et al. [62Chi1],
Eggert [62Egg1], Jangg [62Jan2], Coles et al. [63Col1], Mascarenhas [70Mas1] and at last a
comprehensive review has been given by Okamoto [90Oka1]. The latter author has constructed an
assessed phase diagram, which has been taken as a basis of Fig. 1.
Fig. 1. Hg-In. Phase diagram.
Crystal structure
Crystallographic data of intermediate phases are listed in Table 1.
Landolt-B(cid:246)rnstein
New Series IV/5
Hg-In 2
Table 1. Hg-In. Crystal structure and lattice parameters of intermediate phases.
Phase Structure Type a [nm] b [nm] c [nm] Ref.
HgIn hex HgIn 0.3576 1.3068 70Hel1
Hg In tetr 0.3484 0.3310 70Mas1
4
Metastable phase
Hg In orth γPu 0.3522 0.4847 1.0872 79Mah1
4
Thermodynamics
Enthalpies of mixing of liquid Hg-In alloys have been determined calorimetrically by Laffitte et al.
[71Laf1], Bros [66Bro1], Kleppa [60Kle1], Wittig et al. [60Wit3] and Kleppa et al. [57Kle1]. The results
are, as Hultgren et al. [73Hul1] show, in good agreement. The optimal values for 298 K are plotted in
Fig. 2 (see Hultgren et al. [73Hul1]).
Several works have been performed to measure vapor pressure of Hg above Hg-In alloys.
Thermodynamic activities have been determined from the vapor pressure results. Also, EMF
measurements have been performed rather often to determine a -values. Hultgren et al. [73Hul1] have,
Hg
discussing results from both methods, selected optimal activity data, which are plotted in Fig. 3 (see also
Predel et al. [67Pre1]).
From optimized basic data Hultgren et al. [73Hul1] have calculated excess entropies of mixing, which
are plotted in Fig. 4.
Thermodynamic data of intermediate phases are given in Table 2 (taken from Predel et al. [67Pre1]).
Table 2. Hg-In. Thermodynamic data of intermediate phases
(Predel et al. [67Pre1]).
Phase ∆HS [kJ g-atom(cid:150)1] ∆SS,ex [kJ g-atom(cid:150)1K(cid:150)1]
HgIn 3.25 7.0
"Hg In" 1.15 0.8
6
Landolt-B(cid:246)rnstein
New Series IV/5
Hg-In 3
Fig. 2. Hg-In. Enthalpy of mixing for liquid alloys at 298 K (solid line) and 473 K (dashed line).
Fig. 3. Hg-In. Thermodynamic activities for liquid alloys at 298 K.
Landolt-B(cid:246)rnstein
New Series IV/5
Hg-In 4
Fig. 4. Hg-In. Excess entropy of mixing for liquid alloys at 298 K.
References
51Ito1 Ito, H., Ogawa, E., Yanagase, T.: J. Jpn. Inst. Met. Sendai B 15 (1951) 382
53Spi1 Spicer, W.M., Banick, C.J.: J. Am. Chem. Soc. 75 (1953) 2268
57Kle1 Kleppa, O.J., Kaplan, M.: J. Phys. Chem. 61 (1957) 1120
60Kle1 Kleppa, O.J.: Acta Metall. 8 (1960) 435
60Wit3 Wittig, F.E., Scheidt, P.: Naturwissenschaften 47 (1960) 250
61Koz1 Kozin, L.F., Tananaeva, N.N.: Zh. Neorg. Khim. 6 (1961) 909; Russ. J. Inorg. Chem.
(Engl. Transl.) 6 (1961) 463
62Chi1 Chiarenzelli, R.V., Brown, O.L.I.: J. Chem. Eng. Data 7 (1962) 477
62Egg1 Eggert, G.L.: Trans. ASM 55 (1962) 891
62Jan2 Jangg, G.: Z. Metallkd. 53 (1962) 612
63Col1 Coles, B.R., Merriam, M.F., Fisk, Z.: J. Less-Common Met. 5 (1963) 41
64Mor1 Morawietz, W.: Chem. Eng. Technol. 36 (1964) 638
66Bro1 Bros, J.P.: Bull. Soc. Chim. Fr. 8 (1966) 2582
66Cla1 Claeson, T., Merriam, M.F.: J. Less-Common Met. 11 (1966) 186
67Pre1 Predel, B., Rothacker, D.: Acta Metall. 15 (1967) 135
69Koz1 Kozin, L.F., Deragcheva, M.B.: Zh. Fiz. Khim. 43 (1969) 249; Russ. J. Phys. Chem. (Engl.
Transl.) 43 (1969) 134
70Hel1 Heller, M.W., Musgrave, L.E.: J. Less-Common Met. 20 (1970) 77
70Koz1 Kozin, L.F., Sudakov, V.A.: Izv. Akad. Nauk SSSR Met. (1970) 197; Russ. Metall. (Engl.
Transl.) (1970) 145
70Mas1 Mascarenhas, Y.P.: J. Appl. Crystallogr. 3 (1970) 294
71Laf1 Laffitte, M., Claire, Y., Castanet, R.: J. Chem. Thermodyn. 3 (1971) 735
73Hul1 Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M., Kelley, K.K.: "Selected Values of
Thermodynamic Properties of Binary Alloys", Am. Soc. Met., Metals Park, Ohio (1973)
79Mah1 Mahy, T.X., Giessen, B.C.: J. Less-Common Met. 63 (1979) 257
90Oka1 Okamoto, H., in: "Binary Alloy Phase Diagrams", Second Edition, Vol. 3, T.B. Massalski
(editor-in-chief), Materials Information Soc., Materials Park, Ohio (1990)
Landolt-B(cid:246)rnstein
New Series IV/5
Hg-Ir 1
Hg-Ir (Mercury-Iridium)
Phase diagram
Jangg et al. [73Jan1] stated that no intermediate phases are existing in this system. The solubility of Hg in
solid Ir is extremely small. At 773 K, under constrained Hg-pressure, < 10(cid:150)5 at% Ir are soluble in liquid
Hg. This information was taken by Moffatt [86Mof1] to sketch a phase diagram, which has been redrawn
by Massalski [90Mas1] and also is given in Fig. 1.
Fig. 1. Hg-Ir. Phase diagram at constrained vapor condition.
References
73Jan1 Jangg, G., D(cid:246)rtbudak, T.: Z. Metallkd. 64 (1973) 715
86Mof1 Moffatt, W.G.: "Binary Phase Diagrams Handbook", Gen. Electr. C., Schenectady, N.Y.
(1986)
90Mas1 Massalski, T.B. (editor-in-chief): "Binary Alloy Phase Diagrams", Second Edition, Vol. 3,
T.B. Massalski (editor-in-chief), Materials Information Soc., Materials Park, Ohio (1990)
Landolt-B(cid:246)rnstein
New Series IV/5
Hg-K 1
Hg-K (Mercury-Potassium)
Phase diagram
The phase equilibria have been investigated rather often. A summarizing phase diagram has been
constructed by Vol et al. [79Vol1], it was redrawn by Massalski [90Mas1] and, also, was taken to
construct Fig. 1.
Fig. 1. Hg-K. Phase diagram.
Crystal structure
Crystallographic data of intermediate phases are listed in Table 1.
Landolt-B(cid:246)rnstein
New Series IV/5
Hg-K 2
Table 1. Hg-K. Crystal structure and lattice parameters of intermediate phases [55Duw1].
Phase Structure Type a [nm] b [nm] c [nm]
Hg K cub BaHg 0.96455
11 11
Hg K orth Hg K 0.810 0.516 0.877
2 2
Hg K orth Hg K 0.999 1.923 0.825
7 5 7 5
HgK tricl HgK 0.659 0.676 0.706
α=106.08(cid:176) β=101.87(cid:176) γ=92.79(cid:176)
Thermodynamics
By direct reaction calorimetry Kleinstuber [61Kle1] has determined ∆HL values at 383 K. The results,
together with excess entropies of mixing calculated by Hultgren et al. [73Hul1] are given in Table 2.
Thermodynamic activities have been determined from vapor pressure measurements and EMF
measurements rather often. Hultgren et al. [73Hul1] have discussed the results reported thoroughly and
have given optimal a-values, which have been used to draw activity isotherms in Fig. 2.
By direct reaction calorimetry Kawakami [27Kaw1] has determined enthalpies of formation of some
intermediate phases. The results, taken from Hultgren et al. [73Hul1] as optimized values, are listed in
Table 3.
Table 2. Hg-K. Integral enthalpies of mixing and integral
excess entropies of mixing of liquid alloys at 600 K (taken
from [73Hul1]).
at% K ∆HL [kJ g-atom(cid:150)1] ∆SL,ex [J g-atom(cid:150)1 K(cid:150)1]
10 (cid:150) 8.06 (cid:150) 1.83
80 (cid:150) 8.06 (cid:150) 5.25
90 (cid:150) 3.71 (cid:150) 2.09
Table 3. Hg-K. Integral enthalpies of formation of
intermediate phases at 400 K (Kawakami [27Kaw1],
Hultgren et al. [73Hul1]).
Phase at% K ∆HS [kJ g-atom(cid:150)1]
Hg K 27 (cid:150) 20.5 – 2
2.7
Hg K 33 (cid:150) 23.0 – 2
2
HgK 50 (cid:150) 23.9 – 2
Landolt-B(cid:246)rnstein
New Series IV/5
Hg-K 3
Fig. 2. Hg-K. Thermodynamic activities for liquid alloys at 600 K.
References
27Kaw1 Kawakami, M.: Sci. Rep. Tohoku Imp. Univ. 16 (1927) 915
55Duw1 Duwell, E.J., Baenziger, N.C.: Acta Crystallogr. 8 (1955) 705
61Kle1 Kleinstuber, T.: Thesis, Univ. Munich (1961)
73Hul1 Hultgren, R., Desai, P.D., Hawkins, D.T., Gleiser, M., Kelley, K.K.: "Selected Values of
Thermodynamic Properties of Binary Alloys", Am. Soc. Met., Metals Park, Ohio (1973)
79Vol1 Vol, A.E., Kagan, I.K.: "Handbook of Binary Metallic Systems", Vol. 4, Moscow: Nauka
(1979)
90Mas1 Massalski, T.B. (editor-in-chief): "Binary Alloy Phase Diagrams", Second Edition, Vol. 3,
T.B. Massalski (editor-in-chief), Materials Information Soc., Materials Park, Ohio (1990)
Landolt-B(cid:246)rnstein
New Series IV/5